簡易檢索 / 詳目顯示

研究生: 黃淑萍
Huang, Shu-Ping
論文名稱: 建置與驗證以資料庫為基礎並使用參考標準用於老年人的衰弱指標
Development and Validation of Claims-based Frailty Index (CFI) with reference standard in the Elderly
指導教授: 高雅慧
Kao Yang, Yea-Huei
學位類別: 博士
Doctor
系所名稱: 醫學院 - 臨床藥學與藥物科技研究所
Institute of Clinical Pharmacy and Pharmaceutical sciences
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 105
中文關鍵詞: 以調查為基礎的衰弱指標以資料庫為基礎的衰弱指標台灣地區中老年身心社會生活狀況長期追蹤調查
外文關鍵詞: Survey-based Frailty Index (SFI), Claims-based Frailty Index (CFI), Taiwan Longitudinal Study on Aging (TLSA)
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 背景
    衰弱是一種與老化過程密切相關的多層面綜合症,它代表了老化、疾病以及一系列社會心理、行為和環境因素對健康和整體福祉的累積影響。研究顯示衰弱與不良的健康結果有關,這強調了在臨床和研究環境中評估老年人衰弱的重要性。我們的研究目的在於依據調查資料為參考標準,使用健康保險資料庫中的國際疾病分類代碼來建置以資料庫為基礎的衰弱指標。
    方法
    我們使用台灣地區中老年身心社會生活狀況長期追蹤調查(Taiwan Longitudinal Study on Aging, TLSA)調查資料庫建立以調查為基礎的衰弱指標作為參考標準。我們使用lasso迴歸模型來選擇 健保資料庫的國際疾病分類代碼作為自變數,以解釋以調查為基礎的衰弱指數。以資料庫為基礎的衰弱指標的計算方式為將lasso迴歸結果中各國際疾病分類代碼的系數相加。我們對不良健康結果的預測效度進行評估,並將以資料庫為基礎的衰弱指標與Charlson Comorbidity Index(CCI)及multimorbidity- Frailty Index (mFI)作比較,以評估其收斂效度。
    結果
    2011年TLSA共有3,727位參加者,問卷所得的資料用於建構以調查為基礎的衰弱指標。在2015年的TLSA中,共有8,300名受訪者,包括4,040名男性(48.7%)和 4,260 名女性(51.3%)。依據2011年所建置的以調查為基礎的衰弱指標計算2015年TLSA每位受訪者的以調查為基礎的衰弱指標,隨後與2015年的健保資料庫連結,以建立以資料庫為基礎的衰弱指標。利用lasso迴歸的結果,我們識別出152個 ICD代碼,用於建置以資料庫為基礎的衰弱指標。我們納入2015年 健保資料庫 3,057,705名65歲以上的族群,以進行以資料庫為基礎的衰弱指標驗證。我們比較了以資料庫為基礎的衰弱指標與mFI的預測能力。結果顯示,再入院率的預測值為 0.71,而mFI則為0.62;跌倒率的預測值為0.59,而mFI 則為0.54;一年死亡率的預測值為0.76,而mFI則為0.64;急診就診率的預測值為0.21,而mFI則為0.12;住院天數的預測值為0.18,而mFI則為0.09。在30天內再入院、急診就診及死亡率方面,CCI的預測效能與以資料庫為基礎的衰弱指標不相伯仲;但在跌倒及住院時間方面,CCI的預測能力則顯著下降。此外,CCI與多重用藥之間的相關性明顯比mFI和以資料庫為基礎的衰弱指標更強。
    結論
    以資料庫為基礎的衰弱指標和mFI都能測量衰弱程度;然而,以資料庫為基礎的衰弱指標結合了病人在 日常生活活動(Activity of Daily Living, ADL)和工具性日常生活活動量表(Instrumental Activity of Daily Living, IADL)方面的表現,同時使用以調查為基礎的衰弱指標作為參考標準,與mFI相比,對不良健康結果的預測能力更強。本研究中建構的單純以國際疾病分類來計算的以資料庫為基礎的衰弱指標 也能有效量化衰弱程度。

    Background
    Frailty is a multifaceted syndrome that is closely linked to the aging process, it represents the cumulative effects of aging, disease, and a range of psychosocial, behavioral, and environmental factors on health and overall well-being. Research indicates that frailty is associated with adverse health outcomes, underscoring the significance of assessing frailty in older adults within both clinical and research contexts. Our study aimed to use the data-driven with reference standard approach to develop a Claims-based Frailty Index (CFI) with International Classification of Disease (ICD) codes only.
    Methods
    We used the Taiwan Longitudinal Study on Aging (TLSA) survey database to establish Survey-based Frailty Index (SFI) as a reference standard. We performed a lasso regression model to select the ICD codes from NHID as independent variables to explain the SFI. CFI was calculated by summing the coefficients of each ICD code in the lasso regression results. We conducted an assessment of predictive validity concerning adverse health outcomes and evaluated the performance of our CFI in comparison to the Charlson Comorbidity Index (CCI) and the multimorbidity- Frailty Index (mFI) as a measure of convergent validity.
    Results
    The 2011 TLSA comprised a total of 3,727 participants, and the data obtained from the questionnaires were utilized to construct the SFI. In the 2015 TLSA, there were 8,300 respondents, including 4,040 males (48.7%) and 4,260 females (51.3%). The SFI for each respondent in the 2015 TLSA was calculated based on the SFI established in 2011.The respondents subsequently linked to the 2015 NHID to develop the CFI. Utilizing the results from lasso regression, we identified 152 ICD codes for the estimation of the CFI. The 2015 NHID included a cohort of 3,057,705 individuals aged 65 years and older for the purpose of CFI validation. We compared the predictive capabilities of the CFI in relation to the mFI. The findings indicated predictive values of 0.71 for readmission rates compared to 0.62 for mFI, 0.59 versus 0.54 for fall rates, 0.76 versus 0.64 for one-year mortality rates, 0.21 versus 0.12 for emergency room visit rates, and 0.18 versus 0.09 for days of hospitalization. The predictive performance of the CCI is comparable to that of the CFI regarding readmission within 30 days, emergency room visits, and mortality; however, it exhibits a significantly reduced predictive capability in relation to falls and hospital length of stay. Furthermore, the correlation between CCI and polypharmacy is notably stronger than that observed with the mFI and CFI.
    Conclusion
    Both the CFI and the mFI are capable of measuring frailty; however, the CFI, which integrates participants' performance in ADLs and IADLs through utilizing the SFI as a reference standard, demonstrates a superior predictive capacity for adverse health outcomes compared to the mFI. The ICD-only CFI constructed in this study was also effective in quantifying frailty.

    Chapter 1: Introduction 12 1.1 Background 12 1.2 Frailty in the Elderly 14 1.3 Rationale for Developing a New Frailty Index 15 1.4 Research Questions and Objectives 16 Chapter 2: Literature Review 17 2.1 The Conceptual Evolution of Frailty 17 2.1.1 The phenotype model 19 2.1.2 Cumulative deficit model 19 2.1.3 Clinical Frailty Scale (CFS) 20 2.2 Measurement Approaches in Healthcare Database 20 2.2.1 Clinical knowledge-driven selection 22 2.2.2 Data-Driven Selection without a Reference Standard 22 2.2.3 Data-Driven Selection with reference standard 23 2.3 Determinants and Consequences of Frailty 24 2.4 Gaps in Existing Research 25 Chapter 3: Methodology 27 3.1 Data Sources 28 3.1.1 Taiwan Longitudinal Study on Aging (TLSA) survey 28 3.1.2 National Health Insurance Database (NHID) 29 3.2 Claims-based Frailty Index (CFI) Development 30 3.2.1 Development of reference standard: SFI 30 3.2.1.1 Select items from the questionnaire to compute the SFI 30 3.2.1.2 Validation of SFI 31 3.2.1.3 Definition of predictive outcomes 31 3.2.1.4 Statistical analysis 31 3.2.2 Development of CFI 32 3.2.2.1 Study population 32 3.2.2.2 Organized ICD codes in NHID 32 3.2.2.3 Estimation of CFI using the regression approach 32 3.2.2.4 Selection of Candidate Deficits 33 3.2.2.5 Construction of Frailty Index 33 3.3 Validation of CFI 33 3.3.1 TLSA respondents 33 3.3.1.1 Study population 33 3.3.1.2 Outcome measure 33 3.3.1.3 Convergent validity 34 3.3.2 Elderly population 34 3.3.2.1 Study population 34 3.3.2.2 Outcome measures 34 3.3.2.3 Convergent validity 34 3.3.3 Definition of outcomes 35 3.3.4 Statistical Analysis 35 Chapter 4: Results 36 4.1 Estimation of SFI 36 4.1.1 Basic characteristic of 2011 TLSA 36 4.1.2 SFI calculation 36 4.1.3 SFI validation 36 4.2 Estimation of CFI 37 4.2.1 Basic characteristic of 2015 TLSA 37 4.2.2 The results of Lasso regression 38 4.2.3 Selection of Candidate Deficits 39 4.3 Validation of CFI 39 4.3.1 TLSA respondents 39 4.3.2 Elderly population 40 Chapter 5: Discussion 41 5.1 Key Findings 41 5.2 Strengths of the Study 45 5.3 Limitations 46 5.4 Implications for Practice 46 5.5 Perspectives for Future Research 48 Chapter 6: Conclusion 48 References 49 List of Tables 61 List of Figures 99

    1.Navaneetham, K. and D. Arunachalam, Global Population Aging, 1950–2050, in Handbook of Aging, Health and Public Policy: Perspectives from Asia. 2022, Springer Nature Singapore: Singapore. p. 1-18.
    2.Marengoni, A., et al., The Relationship Between COPD and Frailty: A Systematic Review and Meta-Analysis of Observational Studies. Chest, 2018. 154(1): p. 21-40.
    3.Palmer, K., et al., The Relationship between Anaemia and Frailty: A Systematic Review and Meta-Analysis of Observational Studies. J Nutr Health Aging, 2018. 22(8): p. 965-974.
    4.Palmer, K., et al., Frailty Syndromes in Persons With Cerebrovascular Disease: A Systematic Review and Meta-Analysis. Front Neurol, 2019. 10: p. 1255.
    5.Vetrano, D.L., et al., Frailty and Multimorbidity: A Systematic Review and Meta-analysis. J Gerontol A Biol Sci Med Sci, 2019. 74(5): p. 659-666.
    6.Vetrano, D.L., et al., Hypertension and frailty: a systematic review and meta-analysis. BMJ Open, 2018. 8(12): p. e024406.
    7.Villani, E.R., et al., Frailty and atrial fibrillation: A systematic review. Eur J Intern Med, 2018. 56: p. 33-38.
    8.Monaco, A., et al., Integrated care for the management of ageing-related non-communicable diseases: current gaps and future directions. Aging Clin Exp Res, 2020. 32(7): p. 1353-1358.
    9.Calderón-Larrañaga, A., et al., Assessing and Measuring Chronic Multimorbidity in the Older Population: A Proposal for Its Operationalization. J Gerontol A Biol Sci Med Sci, 2017. 72(10): p. 1417-1423.
    10.Langmann, E., Vulnerability, ageism, and health: is it helpful to label older adults as a vulnerable group in health care? Med Health Care Philos, 2023. 26(1): p. 133-142.
    11.Gill, T.M., et al., Transitions between frailty states among community-living older persons. Arch Intern Med, 2006. 166(4): p. 418-23.
    12.Hébert, R., Functional decline in old age. Cmaj, 1997. 157(8): p. 1037-45.
    13.Lang, P.O., J.P. Michel, and D. Zekry, Frailty syndrome: a transitional state in a dynamic process. Gerontology, 2009. 55(5): p. 539-49.
    14.Lette, M., et al., Initiatives on early detection and intervention to proactively identify health and social problems in older people: experiences from the Netherlands. BMC Geriatrics, 2015. 15(1): p. 143.
    15.Liebel, D.V., et al., Review of nurse home visiting interventions for community-dwelling older persons with existing disability. Med Care Res Rev, 2009. 66(2): p. 119-46.
    16.Clegg, A., et al., Frailty in elderly people. The Lancet, 2013. 381(9868): p. 752-762.
    17.Lekan, D.A., S.K. Collins, and A.A. Hayajneh, Definitions of Frailty in Qualitative Research: A Qualitative Systematic Review. J Aging Res, 2021. 2021: p. 6285058.
    18.Rockwood, K. and A. Mitnitski, Frailty defined by deficit accumulation and geriatric medicine defined by frailty. Clin Geriatr Med, 2011. 27(1): p. 17-26.
    19.Xue, Q.L., The frailty syndrome: definition and natural history. Clin Geriatr Med, 2011. 27(1): p. 1-15.
    20.O'Donovan, M., et al., Assessing Global Frailty Scores: Development of a Global Burden of Disease-Frailty Index (GBD-FI). Int J Environ Res Public Health, 2020. 17(16).
    21.Sezgin, D., et al., Defining frailty for healthcare practice and research: A qualitative systematic review with thematic analysis. Int J Nurs Stud, 2019. 92: p. 16-26.
    22.Fried, L.P., et al., Frailty in Older Adults: Evidence for a Phenotype. The Journals of Gerontology: Series A, 2001. 56(3): p. M146-M157.
    23.O’Caoimh, R., et al., Prevalence of frailty in 62 countries across the world: a systematic review and meta-analysis of population-level studies. Age and Ageing, 2020. 50(1): p. 96-104.
    24.Dent, E., P. Kowal, and E.O. Hoogendijk, Frailty measurement in research and clinical practice: A review. European Journal of Internal Medicine, 2016. 31: p. 3-10.
    25.Kim, D.H., Measuring Frailty in Health Care Databases for Clinical Care and Research. Ann Geriatr Med Res, 2020. 24(2): p. 62-74.
    26.Feliz, J.D. and M.A. Hussain, Chapter 44 - Database research, in Translational Surgery, A.E.M. Eltorai, et al., Editors. 2023, Academic Press. p. 267-272.
    27.Kirkwood, T.B., Understanding the odd science of aging. Cell, 2005. 120(4): p. 437-47.
    28.Lipsitz, L.A., Dynamics of stability: the physiologic basis of functional health and frailty. J Gerontol A Biol Sci Med Sci, 2002. 57(3): p. B115-25.
    29.Fried, L.P., et al., Nonlinear multisystem physiological dysregulation associated with frailty in older women: implications for etiology and treatment. J Gerontol A Biol Sci Med Sci, 2009. 64(10): p. 1049-57.
    30.Church, S., et al., A scoping review of the Clinical Frailty Scale. BMC Geriatrics, 2020. 20(1): p. 393.
    31.Fried, L.P., et al., Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci, 2001. 56(3): p. M146-56.
    32.Song, X., A. Mitnitski, and K. Rockwood, Prevalence and 10-year outcomes of frailty in older adults in relation to deficit accumulation. J Am Geriatr Soc, 2010. 58(4): p. 681-7.
    33.Rockwood, K. and A. Mitnitski, Frailty in relation to the accumulation of deficits. J Gerontol A Biol Sci Med Sci, 2007. 62(7): p. 722-7.
    34.Sternberg, S.A., et al., The identification of frailty: a systematic literature review. J Am Geriatr Soc, 2011. 59(11): p. 2129-38.
    35.Chrischilles, E., et al., Beyond comorbidity: expanding the definition and measurement of complexity among older adults using administrative claims data. Med Care, 2014. 52 Suppl 3: p. S75-84.
    36.Hope, A.A., et al., Frailty Before Critical Illness and Mortality for Elderly Medicare Beneficiaries. J Am Geriatr Soc, 2015. 63(6): p. 1121-8.
    37.Joynt, K.E., et al., Segmenting high-cost Medicare patients into potentially actionable cohorts. Healthc (Amst), 2017. 5(1-2): p. 62-67.
    38.Kim, D.H. and S. Schneeweiss, Measuring frailty using claims data for pharmacoepidemiologic studies of mortality in older adults: evidence and recommendations. Pharmacoepidemiol Drug Saf, 2014. 23(9): p. 891-901.
    39.McIsaac, D.I., et al., Derivation and Validation of a Generalizable Preoperative Frailty Index Using Population-based Health Administrative Data. Ann Surg, 2019. 270(1): p. 102-108.
    40.Orkaby, A.R., et al., The Burden of Frailty Among U.S. Veterans and Its Association With Mortality, 2002-2012. J Gerontol A Biol Sci Med Sci, 2019. 74(8): p. 1257-1264.
    41.Searle, S.D., et al., A standard procedure for creating a frailty index. BMC Geriatr, 2008. 8: p. 24.
    42.Soong, J., et al., Quantifying the prevalence of frailty in English hospitals. BMJ Open, 2015. 5(10): p. e008456.
    43.Gilbert, T., et al., Development and validation of a Hospital Frailty Risk Score focusing on older people in acute care settings using electronic hospital records: an observational study. Lancet, 2018. 391(10132): p. 1775-1782.
    44.Lai, H.Y., et al., Development of frailty index using ICD-10 codes to predict mortality and rehospitalization of older adults: An update of the multimorbidity frailty index. Arch Gerontol Geriatr, 2022. 100: p. 104646.
    45.Peng, L.N., et al., Comparisons Between Hypothesis- and Data-Driven Approaches for Multimorbidity Frailty Index: A Machine Learning Approach. J Med Internet Res, 2020. 22(6): p. e16213.
    46.Wen, Y.C., L.K. Chen, and F.Y. Hsiao, Predicting mortality and hospitalization of older adults by the multimorbidity frailty index. PLoS One, 2017. 12(11): p. e0187825.
    47.Davidoff, A.J., et al., A novel approach to improve health status measurement in observational claims-based studies of cancer treatment and outcomes. J Geriatr Oncol, 2013. 4(2): p. 157-65.
    48.Dubois, M.-F., et al., Assessing comorbidity in older adults using prescription claims data. Journal of Pharmaceutical Health Services Research, 2010. 1(4): p. 157-165.
    49.Faurot, K.R., et al., Using claims data to predict dependency in activities of daily living as a proxy for frailty. Pharmacoepidemiol Drug Saf, 2015. 24(1): p. 59-66.
    50.Kim, D.H., et al., Measuring Frailty in Medicare Data: Development and Validation of a Claims-Based Frailty Index. J Gerontol A Biol Sci Med Sci, 2018. 73(7): p. 980-987.
    51.Segal, J.B., et al., Development of a Claims-based Frailty Indicator Anchored to a Well-established Frailty Phenotype. Med Care, 2017. 55(7): p. 716-722.
    52.Segal, J.B., et al., External validation of the claims-based frailty index in the national health and aging trends study cohort. Am J Epidemiol, 2017. 186(6): p. 745-747.
    53.Carrasco-Ribelles, L.A., et al., Contribution of Frailty to Multimorbidity Patterns and Trajectories: Longitudinal Dynamic Cohort Study of Aging People. JMIR Public Health Surveill, 2023. 9: p. e45848.
    54.Chu, W.M., et al., Additive effect of frailty with distinct multimorbidity patterns on mortality amongst middle-aged and older adults in Taiwan: A 16-year population-based study. Geriatr Gerontol Int, 2023. 23(9): p. 684-691.
    55.Lujic, S., et al., Interaction effects of multimorbidity and frailty on adverse health outcomes in elderly hospitalised patients. Sci Rep, 2022. 12(1): p. 14139.
    56.Luo, Y., et al., Associations between multimorbidity and frailty transitions among older Americans. J Cachexia Sarcopenia Muscle, 2023. 14(2): p. 1075-1082.
    57.Lv, J., et al., Research on the frailty status and adverse outcomes of elderly patients with multimorbidity. BMC Geriatr, 2022. 22(1): p. 560.
    58.Villacampa-Fernández, P., et al., Frailty and multimorbidity: Two related yet different concepts. Maturitas, 2017. 95: p. 31-35.
    59.Carrasco-Ribelles, L.A., et al., Dynamics of multimorbidity and frailty, and their contribution to mortality, nursing home and home care need: A primary care cohort of 1 456 052 ageing people. eClinicalMedicine, 2022. 52.
    60.Vermeiren, S., et al., Frailty and the Prediction of Negative Health Outcomes: A Meta-Analysis. J Am Med Dir Assoc, 2016. 17(12): p. 1163.e1-1163.e17.
    61.Dent, E., et al., Frailty increases the long-term risk for fall and fracture-related hospitalizations and all-cause mortality in community-dwelling older women. J Bone Miner Res, 2024. 39(3): p. 222-230.
    62.Kim, Y.S., et al., Association of frailty with fall events in older adults: A 12-year longitudinal study in Korea. Arch Gerontol Geriatr, 2022. 102: p. 104747.
    63.Yang, Z.C., et al., Frailty Is a Risk Factor for Falls in the Older Adults: A Systematic Review and Meta-Analysis. J Nutr Health Aging, 2023. 27(6): p. 487-595.
    64.James, J., et al., Why do we evaluate 30-day readmissions in general medicine? A historical perspective and contemporary data. Intern Med J, 2023. 53(6): p. 1070-1075.
    65.Kahlon, S., et al., Association between frailty and 30-day outcomes after discharge from hospital. Cmaj, 2015. 187(11): p. 799-804.
    66.Källberg, A.S., et al., Prevalence of frailty and associated factors in older adults seeking care at Swedish emergency departments. BMC Geriatr, 2023. 23(1): p. 798.
    67.Cunha, A.I.L., et al., Frailty as a predictor of adverse outcomes in hospitalized older adults: A systematic review and meta-analysis. Ageing Res Rev, 2019. 56: p. 100960.
    68.衛生福利部國民健康署. 中老年身心社會生活狀況長期追蹤調查. [cited 2025 Jan31]; Available from: https://www.hpa.gov.tw/Pages/List.aspx?nodeid=108.
    69.Chang, H.Y., et al., The Co-Occurrence Of Frailty (Accumulation Of Functional Deficits) And Depressive Symptoms, And Its Effect On Mortality In Older Adults: A Longitudinal Study. Clin Interv Aging, 2019. 14: p. 1671-1680.
    70.Lin, Y.K., et al., The relationship between physical activity trajectories and frailty: a 20-year prospective cohort among community-dwelling older people. BMC Geriatr, 2022. 22(1): p. 867.
    71.Hwang, A.C., et al., Transitions in Frailty and 4-Year Mortality Risk in Taiwan Longitudinal Study on Aging. J Am Med Dir Assoc, 2023. 24(1): p. 48-56.e5.
    72.Hwang, A.C., et al., Longitudinal changes of frailty in 8 years: comparisons between physical frailty and frailty index. BMC Geriatr, 2021. 21(1): p. 726.
    73.Ekram, A., et al., The association between polypharmacy, frailty and disability-free survival in community-dwelling healthy older individuals. Arch Gerontol Geriatr, 2022. 101: p. 104694.
    74.Gutiérrez-Valencia, M., et al., The relationship between frailty and polypharmacy in older people: A systematic review. Br J Clin Pharmacol, 2018. 84(7): p. 1432-1444.
    75.Nwadiugwu, M.C., Frailty and the Risk of Polypharmacy in the Older Person: Enabling and Preventative Approaches. J Aging Res, 2020. 2020: p. 6759521.
    76.Woolford, S.J., et al., Frailty, multimorbidity and polypharmacy. Medicine, 2021. 49(3): p. 166-172.
    77.Stürmer, T., et al., Treatment effects in the presence of unmeasured confounding: dealing with observations in the tails of the propensity score distribution--a simulation study. Am J Epidemiol, 2010. 172(7): p. 843-54.
    78.Kurth, T., et al., Results of multivariable logistic regression, propensity matching, propensity adjustment, and propensity-based weighting under conditions of nonuniform effect. Am J Epidemiol, 2006. 163(3): p. 262-70.
    79.Lunt, M., et al., Different methods of balancing covariates leading to different effect estimates in the presence of effect modification. Am J Epidemiol, 2009. 169(7): p. 909-17.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE