| 研究生: |
李秀芳 Lee, Hsiu-Fang |
|---|---|
| 論文名稱: |
金紅石結構雙氧化合物之壓縮研究 Compression Studies of Rutile-Structure Dioxides |
| 指導教授: |
黃怡禎
Huang, Eugene 余樹楨 Yu, Shu-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 金紅石 、雙氧化合物 、體彈模量 |
| 外文關鍵詞: | rutile, dioxide, bulk modulus |
| 相關次數: | 點閱:77 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗藉鑽石高壓砧對五種金紅石結構之雙氧化合物,金紅石(Rutile, TiO2)、軟錳礦(Pyrolusite, MnO2)、錫石(Cassiterite, SnO2)、副黃碲礦(Paratellurite, TeO2)及塊黑鉛礦(Plattnerite, PbO2)粉晶進行常溫之壓縮研究。於常溫下以同步輻射為X光源進行能量分散繞射實驗來求得結構及晶格參數。
基本上金紅石結構之雙氧化合物中,TiO2、MnO2、SnO2及PbO2其a軸方向的壓縮量大於c軸方向的壓縮量,TeO2則a軸方向的壓縮量大致與c軸方向的壓縮量相同。
TiO2、MnO2及SnO2的解壓資料回到低壓的趨勢線上,因此屬於可逆的反應;而塊黑鉛礦解壓的資料則並未回到低壓的趨勢線上,因此屬於非可逆反應。
在高壓下則在7、6、5、2、0.5GPa左右分別有∂V/∂P不連續之現象。陽離子同屬於第四族的SnO2 及PbO2 相變的壓力值會隨著陽離子半徑的增加而變小。
金紅石結構雙氧化合物TiO2、MnO2、SnO2、TeO2及PbO2之體彈模量(Ko: bulk modulus)依序分別為250、240、224、110及90Gpa。本實驗發現整體聲速(bulk sound velocity)和平均原子量(mean atomic weight)間有線性關係存在,因此體彈模量可能具有系統系的趨勢存在。
在金紅石結構之雙氧化合物相變後的高壓相方面,TiO2、MnO2、SnO2、TeO2及PbO2依序分別為斜方晶系、單斜晶系、單斜晶系、單斜晶系及斜方晶系,另外TeO2高壓相單斜晶系又可以分成單斜晶系(I)及單斜晶系(II)。
Compression behaviors of five rutile-structure dioxides, TiO2 (Rutile), MnO2 (pyrolusite), SnO2 (cassiterite), TeO2 (paratellurite) and PbO2 (plattnerite) were studied in a piston-cylinder type diamond cell at room temperature. The energy dispersive method was used for the collection of the diffraction signals of the compressed sample using synchrotron radiation as an X-ray source.
Four dioxides (TiO2、MnO2、SnO2 and PbO2) show anisotropic compression along their crystallographic axes with a axis being more compressible than c axis. The compressibility of a axis is similar to that of c axis in TeO2.
A discontinuity in the compression data (i.e. the change in ∂V/∂P) for the five dioxides (TiO2, MnO2, SnO2, TeO2 and PbO2) was found to exist at 7, 6, 5, 2 and 0.5 GPa, respectively. This clearly indicates that a first-order phase transition has taken place in these dioxides. The pressure at which the phase transition occurs in rutile-type dioxides decreases with an increase in the radius of cation. The unloading data show that the phase transitions in TiO2, MnO2 and SnO2 are reversible while those of TeO2 and PbO2 are irreversible.
By fitting the compression data to the Birch-Murnaghan equation, the bulk modulus of TiO2, MnO2, SnO2, TeO2 and PbO2 of the rutile-type structure are determined to be 250, 240, 224,110 and 90 GPa, respectively. A linear relationship was found to exist between the bulk sound velocity and mean atomic weight of the rutile-type dioxides.
The post-rutile phase transformations of the five dioxides (TiO2、MnO2、SnO2、TeO2 and PbO2) were determined to be orthorhombic, monoclinic, monoclinic, monoclinic and orthorhombic, respectively. Two monoclinic phases of TeO2 were found, i.e., the monoclinic phase (I) and monoclinic phase (II).
中文部份
毛河光院士成大論壇演講記錄,成大校刊,第192期,第40-42頁,2000年。
余樹楨,晶體之結構與性質,渤海堂文化事業有限公司,台北,共569頁,1987年。
李淑玲,二氧化鉛單晶之鑽石高壓砧壓縮研究,國立成功大學地球科學所碩士論文,共64頁,1992年。
李佩倫,BaSO4-PbSO4固溶系列之高溫高壓相變研究,國立成功大學地球科學所博士論文,共139頁,2000年。
黃怡禎譯,礦物學,地球科學文教基金會,台北,共689頁,2000年。
謝鴻森,地球科學進展,第九卷,增刊,II-IV,1994年。
英文部份
Anderson, O. L.; Patterns in elastic constants of minerals important to geophysics. In E. C. Robertson (ed.): The nature of the solid Earth, McGraw-Hill, New York, 575-613, 1972.
Bassett, W. A. and Takahashi, T.; Silver Iodide polymorphs: American Mineralogist, 50, 1576-1594, 1965.
Baur, W. H. and Khan, A. A.; Rutile-type compounds IV SiO2, GeO2, and a comparison with other rutile-type structures: Acta Cryst., B27, 2133-2139., 1971.
Brister, K.; High-pressure instrumentation at CHESS: Rev. Sci. Instrum. 63, 1, 1992.
Carpenter M. C., Hemley, R. J. and Mao, H. K.;High-pressure elasticity of stishovite and the P42/mnm Pnnm phase transition: J. Geophys. Res., 105, B5, 10807-10816, 2000.
Clendenen, R. L. and Drickamer, H. G.; Lattice parameters of nine oxides and sulfides as a function of pressure: J. Chem. Phys., 44, 11, 4223-4228, 1966.
Haines J. and Léger J. M.; X-ray diffraction study of phase transitions and structureal evolution of tin dioxide at high pressure: relationships between structure types and implications for other rutile-type dioxides: Phys. Rev. B, 55, 17, 11144-11153,1996.
Hara, Y. and Nicol, M.; Raman spectra and the structure of rutile at high pressures: Phys. Stat. sol. (b), 94, 317-322, 1979.
Hazen, R. M. and Finger, L. W.; Bulk moduli and High-Pressure crystal structures of rutile-type compounds: J. Phys. Chem. Solids, 42, 143-151, 1980.
Hemley, R. J., Shu, J., Carpenter, M. A., Hu, J., Mao, H. K. and Kingma, K. J.; Strain/order parameter coupling in the ferroelastic transition in dense SiO2: Solid state communications, 114, 527-532, 2000.
Huang, E., Li, A. S. and Yu, S. C.; Compression studies of single-crystal SnO2 and PbO2 in a diamond cell: TAO, 3, 2, 111-127, 1992.
Huang, E.; High-pressure experimental mineralogy: Special publication of the central geological survey, 7, 211-239, 1993.
Jamieson, J. C.; Phase transitions in rutile-type structures, High-pressure research: application in geophysics, Academic Press, Inc., 209-218, 1977.
Jamieson, J. C., Fritz, J. N. and Manghnani, M. H.; Pressure measurement at high temperature in x-ray diffraction studies: gold as a primary standard, High-Pressure Research in Geophysics: Center for Academic Publications Japan, 27-48, 1982.
Levein, L., Prewitt, C. T. and Weidner, D. J.; Single-crystal X-ray study of quartz at high pressure: Amer. Mineral., 65, 920-930, 1980.
Liebermann, R. C.; Elastic properties of polycrystalline SnO2 and GeO2: comparison with stishovite and rutile data: Phys. Earth Planet. Interiors, 7, 461-465, 1973.
Liu, L. G.; Phase transformation and the constitution of the deep mantle: The earth: Its origin, structure and evolution, Academic Press, 177-201, 1979.
Liu, L. G.; The High-Pressure phase transformations of PbO2: An in-situ x-ray diffraction study: Phys. Chem. Minerals, 6, 187-196, 1980.
Liu, L. G.; High-pressure phase transformations of the dioxides: Implications for structures of SiO2 at high pressure: Advances in earth and planetary sciences, V.12, High-pressure research in Geophysics, Center Acad. Pub., Tokyo, Japan, 349-360, 1982.
Liu, L. G. and Bassett, W. A.; Element, oxides, and silicates, High-pressure phase with implications for the earth’s interior, Oxford University Press, 250pp, 1986.
Ming, L. C. and Manghnani, M. H.; High-Pressure phase transformations in rutile-structured dioxides: Advances in earth and planetary sciences, V.12, High-pressure research in Geophysics, Center Acad. Pub., Tokyo, Japan, 329-347, 1982.
Shankland, T. J.; Velocity-density systematics: derivation from Debye theory and the effect of ionic size: J. Geophys. Res, 77, 3750-3758, 1972.
Sumino, Y. and Anderson, O. L.; Elastic constants of minerals: In R.S. Carmichael(ed.) Handbook of physical properties of rocks, v.III. CRC Press, Boca Raton, Florida, 39-138, 1984.
Wyckoff R. W. G.; Crystal structures: Vol. I, 2nd. ed.,Interscience, New York, 467pp, 1965.
Yagi, T. and Akimoto, s.; Phase boundary and transition rate of orthorhombic-cubic transformation in PbO2: J, Geophy. Res., 85, B12, 6991-6995 ,1980.