| 研究生: |
陳孟佐 Chen, Meng-Tso |
|---|---|
| 論文名稱: |
三鹵甲烷和硝基苯在TiO2粉末上的吸附與化學反應研究 Adsorption and Reactions of Trihalomethane and Nitrobenzene on Powdered TiO2 |
| 指導教授: |
林榮良
Lin, Jong-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 硝基苯 、傅氏轉換紅外光譜儀 、二氧化鈦 、光反應 、三鹵甲烷 |
| 外文關鍵詞: | Photoreaction, TiO2, FTIR, CHBr3, CHCl3, C6H5NO2 |
| 相關次數: | 點閱:143 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用傅氏轉換紅外光譜儀(FTIR)研究CHBr3,CHCl3和C6H5NO2在二氧化鈦表面上的吸附、熱反應及光反應。
CHBr3在35oC時會以分子性吸附或斷掉一個至三個C-Br鍵,形成如HCOO(a)、(-OCHBr2)或(-OCHBrO-)等表面物種。在真空下,150oC時CHBr3會脫附或分解在表面上形成HCOO(a);CHBr3(g)在TiO2上加熱至400oC會有CO和HBr(g)的生成;在有氧存在下的照光反應,吸附相的CHBr3會分解生成CO2(g),HCOO(a),CHBr3的照光反應在無氧下幾乎是不進行的。
CHCl3在35oC的吸附型態與CHBr3類似,表面吸附物種有CO(a)、HCOO(a)、(-OCHCl2)或(-OCHClO-)等。吸附相的CHCl3在150oC時會脫附或分解在表面上形成HCOO(a);CHCl3(g)在TiO2上加熱至400oC會有CO和HCl(g)的生成,其中HCl來自於Cl(a)和OH(a)的結合,CO則來自於CHCl3或HCOO(a)的分解;在有氧下,吸附相的CHCl3照光生成CO2(g)和HCOO(a),照光反應在無氧的情況下幾乎不進行的。
C6H5NO2在35oC時主要是以C6H5NO2中的-NO2基與Ti4+ ions或OH基交互作用而吸附,即以end-on吸附在二氧化鈦上;在真空下加熱至400oC,有azoxybenzene (C6H5N=NC6H5), nitrosobenzene(C6H5NO), or或phenoxy group(C6H5O)等可能物種的生成;在有氧情況下照光,C6H5NO2的反應並不完全,產物為 CO,水,carbonate(CO3)或NOx- 等物種;在有水的存在下會加速照光反應的進行。
The adsorption and reactions of CHBr3, CHCl3 and C6H5NO2 on powdered TiO2 have been investigated by Fourier transform infrared spectroscopy. CHBr3 is adsorbed molecularly or dissociatively to form HCOO(a), (-OCHBr2), or (-OCHBrO-) at 35oC. Surface CHBr3 desorbs or decomposes into HCOO(a) more in vacuum at ~150oC. As TiO2 in contact with gaseous CHBr3 is heated in a closed cell, CO(g) and HBr(g) are detected. In the case of CHBr3(a) photodecomposition in the presence of O2, CO2(g), and HCOO(a) are generated. But CHBr3(a) photoreaction is almost terminated in the absence of O2. At 35oC, CHCl3 is adsorbed molecularly or dissociately to form CO(a), HCOO(a), (-OCHCl2), or (-OCHClO-). As temperature is raised above 150 oC, the absorbed CHCl3 is desorbed or transformed into HCOO(a) more. As TiO2 in contact with gaseous CHCl3 is heated in a closed cell, HCl from Cl(a) and OH(a) recombination, CO from CHCl3 or HCOO(a) decomposition are generated. Under UV irradiation in the presence of O2, adsorbed CHCl3 on TiO2 decomposes to form CO2(g) and HCOO(a). The CHCl3 photoreaction is terminated in the absence of O2. C6H5NO2 is adsorbed in a end-on geometry on TiO2 surface, with an interaction of the nitro-group with the Ti4+ ions or OH group at 35oC. As the TiO2 surface is heated to 400 oC, the infrared absorptions suggests the formation of azoxybenzene (C6H5N=NC6H5), nitrosobenzene(C6H5NO), or phenoxy group(C6H5O). Adsorbed C6H5NO2 decomposes to form CO(a), H2O(a), and carbonate(CO3) or NOx- under UV irradiation in O2. The photocomposition is accelerated with addition of H2O.
1. S. J. Gregg and K. S. W. Sing, Adsorption, Surface area and Porosity. Academic Press, New York, 1967.
2. G. A. Somorjai, Introduction to surface chemistry and catalysis, Wiley & Sons, New York, p1, 1994.
3. J. C. Vickerman, Surface Analysis, Wiley & Sons, New York, p2, 1997.
4. P. W. Atkins, Physical Chemistry, Oxford University, p997, 1994.
5. G. A. Somorjai, Introduction to Surface Chemistry and Catalysis, Wiley & Sons, New York, p443, 1994.
6. 卓靜哲,何瑞文,黃守仁,施良垣,蘇世剛,物理化學,三民書局,台南市,第507-508頁,1994年.
7. A. Fujishima and K. Honda, Nature, 37, 238, 1972.
8. A. J. Bard, J. Phys. Chem. 86, 172, 1982.
9. A. J. Bard, Science 207, 139, 1980.
10. A. L. Linsebigler, G. Lu, and J. T. Yates, Jr., Chem. Rev. 95, 735, 1995.
11. J. Fan and J. T.Yates, Jr., J. Am. Chem. Soc. 118, 4686, 1996.
12. J. K. Burdett, T. Hughbands, J. M. Gordon, J. W. Richardson, Jr., and J. V. Smith, J. Am. Chem. Soc. 109, 3639, 1987.
13. J. Augustynski, Electrochim. Acta, 38, 43, 1993.
14. L. Cao, F. -J. Spiess, A. Huang, and S. L. Suib, J. Phys. Chem. B, 103, 2912, 1999.
15. D. F. Ollis, E. Pelizzetti, and N. Serpone, Environ. Sci. Technol. 25, 1522, 1991.
16. O. Legrini, E. Oliveros, and A. M. Braun, Chem. Rev. 93, 671, 1993.
17. K.-C. G. Low, S. R. McEvoy, and R. W. Matthews, Environ. Sci. Technol. 25, 460, 1991.
18. A. Wold, Chem. Mater. 5, 280, 1993.
19. M. Scgiavello, Ed. Photocatalysis and Enviroment, Kluwer Academic Publishers, Dordrecht, 1988.
20. P. Calza, C. Minero, A. Hiskia, E. Papacostantimou, and E. Pelizzetti, Appl. Catal. B: Enviromental, 21, 191, 1999.
21. W. Choi, and M. R. Hoffmann, Environ. Sci. Technol. 31, 89, 1997.
22. M. Kang, S.-Y. Lee, C.-H. Chung, S. M. Cho, G. Y. Han, B.-W. Kim, and K. J. Yoon, J. Photochemistry and Potobiology A: Chemistry 144, 185, 2001.
23. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Chem. Rev. 95, 69, 1995.
24. J. Xie, M. Huang, and S. Kaliaguine, React. Kinet. Catal. Lett. 58, 217, 1996.
25. G. Ramis, G. Bussa, and V. Lorenzelli, J. Electron Spectroscopy and Related Phonomena 64/65, 297, 1993.
26. C. A, Koutataal, P. A. J. M. Angevaare, E. J. Grootendorst, and V. Ponec, J. Catal. 114, 82, 1993.
27. S. Meijers, and V. Ponec, J. Catal.149, 307. 1994.
28. X. Cao, S. K. Coulter, M. D. Ellison, H. Liu, J. Liu, and R. J. Hamers, J. Phys. Chem. B 105, 3759, 2001.
29. H. Kasturirangan, V. Ramakrishnan, and J. C. Kuriacose, J. Catal. 69, 216, 1981.
30. P. Piccinini, C. Minero, M. Vincenti, and E. Pelizzetti, Catalysis Today 39, 187, 1997.
31. J. Fan and J. T. Yates, Jr., J. Phys. Chem. 98, 10621, 1994.
32. J. C. S. Wong, A. Linsebigler, G. Lu, J. Fan, and J. T. Yates, Jr., J. Phys. Chem. 99, 335, 1995.
33. Degussa Technical Bulletin Pigments Report NO.56, p13, 1990.
34. M. P. Fernandez-Liencres, A. Navarro, J. J. Lopez, and M. Fernandez, J. Phys. Chem. 100, 16058, 1996.
35. L.-F. Liao, W.-C. Wu, C.-Y. Chen, and J.-L. Lin, J. Phys. Chem. B 105, 7678, 2001.
36. M.-T. Chen, C.-F. Lien, L.-F. Liao, and J.-L. Lin, J. Phys. Chem. B 107, 3837, 2003.
37. L.-F. Liao, C.-F. Lien, M.-T. Chen, Y.-F. Lin, and J.-L. Lin, Phys. Chem. Chem. Phys. 5, 1912, 2003.
38. The Aldrich Library of FT-IR Spectra, 1st ed.; Aldrich Chemical Co., Inc.: Milwaukee, WI, 1985.
39. C.-C. Chuang, C.-C. Chen, and J.-L. Lin, J. Phys. Chem. B 103, 2439, 1999.
40. O. I. Micic, Y. Zhang, K. R. Cromack, A. D. Trifunac, and M. C. Thurnauer, J. Phys. Chem. 97, 13284, 1993.
41. M. El-Maazawi, A. N. Finken, A. B. Nair, and V. H. Grassian, J. Catal. 191, 138, 2000.
42. M. A. Fox and M. T. Dulay, Chem. Rev., 93, 341. 1993
43. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Chem. Rev., 95, 69. 1995.
44. P. Meriaudeau and J. C. Vedrine, J. Chem. Soc., Faraday Trans. 2, 72, 472, 1976.
45. L.-F. Liao, C.-F. Lien, D.-L. Shieh, M.-T. Chen, and J.-L. Lin,. J. Phys. Chem. B 106, 11240, 2002.
46. T. G. Gibian, D. S. McKinney, J. Am. Chem. Soc. 73, 1431, 1951.
47. CRC Handbook of Chemistry and Physics, 81st ed,; CRC Press, 2000.
48. S. Klee, J. F. Ogilvie, Spectrochim. Acta, 49A, 345, 1993.
49. J. D. Laposa, Spectrochim. Acta, 35A, 65, 1979.
50. D. H. Whiffen, J. Chem. Soc., 1350, 1956.
51. W.-C. Wu, L.-F. Liao, C.-F. Lien, and J.-L. Lin, Phys. Chem. Chem. Phys. 3, 4456, 2001.
52. E. Guglielminotti, Langmuir, 6, 1455, 1990.
53. D. Bianchi, T. Chafik, M. Khalfallah, and S. J. Teichner, Appl. Catal. A: General, 112, 219, 1994.
54. J. Kondo, H. Abe, Y. Sakata, K. Maruya, K. Domen, and T. Onishi, J. Chem. Soc. Faraday Trans. 1, 84, 511, 1988.
55. W. Hertl, Langmuir, 5, 96, 1989.
56. I. A. Fisher, and A. T. Bell, J. Catal. 172, 222, 1997.
57. K. Hadjiivanov, V. Bushev, M. Kantcheva, and D. Klissurski, Langmuir, 10, 464, 1994.