| 研究生: |
張煜群 Chang, Yu-Chun |
|---|---|
| 論文名稱: |
利用自由載子消散效應設計與製作一分二多模干涉之馬赫-任德爾光調變器在SOS與SOI基板上 Design and Fabrication of the1x2 MMI-Based MZI Optical Modulators on SOS (Silicon-On-Silicon) and SOI (Silicon-On-Insulator) Utilizing the Plasma Dispersion Effect |
| 指導教授: |
莊文魁
Chuang, Ricky W. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 126 |
| 中文關鍵詞: | SOI基板 、SOS基板 、熱光效應 、自由載子消散效應 、一分二馬赫任德爾光調變器 |
| 外文關鍵詞: | silicon-on-silicon (SOS) substrate, silicon-on-insulator (SOI) substrate, thermo-optic effect, 1×2 MMI-coupled MZI optical modulator |
| 相關次數: | 點閱:103 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,主要研究在1.55微米的通訊波長下的矽之電光調變器上。在研究中採用SOD熱擴散方法製作p+-i-n+結構式光調變器。使用SOD技術優點包含低成本且簡易化非常適合用來取代傳統離子佈植。除此之外,SOD技術也能相容於現今的CMOS製程。
在元件方面,利用分束傳播法設計並模擬一分二多模干涉架構下之馬赫-任德爾光調變器在Silicon-on-Silicon(SOS)基板上操作波於1.55μm波長,設計之後並製作。後來了解到,調變訊號藉由電流注入將導致兩個競爭調變機制互相作用,即熱光色散效應和自由載子消散效應。因此,兩者不同調變機制導致折射率變化量為反向。光波導調變器在不同調變長度下,靜態調變深度皆可高達100%,且本元件的頻率響應(f3dB)達336.5kHz。
此外,上述元件已被製做出來且製做 Silicon-on-Insulator (SOI)基板上,並與上述SOS基板做比較。實驗結果顯示在不同調變長度下,靜態調變深度皆可高達100%、達第一個π相位皆只需約0.2W的輸入功率且上升時間與下降時間已小於50 ns、截止頻率(f3dB)已大於5MHz。
最後,成功驗證出在SOI基板上製作1×2多模干涉架構下之馬赫-任德爾光調變器的調變機制為自由載子消散效應主導。
In this thesis, the attention is focused on an electrooptic Si-based modulator working at 1.55μm. The spin-on-dopant (SOD) thermal diffusion method was adopted to fabricate the optical modulator based on the p+-i-n+ structure. The advantages of using the SOD process include low cost and simplicity, and this very technique is therefore highly suitable to be used as an substitute for the conventional ion implantation. In addition, the SOD method is also compatible with the standard CMOS process.
On the device side, the 1 x 2 multimode interference (MMI) based Mach-Zehnder (MMI-MZI) modulators on silicon-on-silicon (SOS) substrates operating at 1.55μm were designed and simulated using the numerical beam propagation method (BPM), before subjecting the final design for device fabrication. It was later realized that the signal modulation by current injection led to two competitive modulation mechanisms in play, namely, the thermo-optic and plasma dispersion effects. Consequently, two opposing mechanisms would bring about the opposite refractive index changes. The aforementioned modulators with different modulation lengths being tested would eventually render the modulation depth closes to 100% and 3dB frequency response up to 336.5 kHz. Furthermore, the same devices mentioned previously were also fabricated and later tested on silicon-on-insulator (SOI) substrates for performance comparison. The experimental results demonstrate that a nearly 100% modulation depth was achieved for modulators with different modulation lengths, and only 0.2 W of input power was needed for devices to reach first phase shift. Finally, the devices on SOI substrates operated significantly faster in terms of signal modulation as the rise/fall times smaller than 50 ns and the 3dB cutoff frequency of greater than 5 MHz were measured, outright showing that the signal modulation was dominated by plasma dispersion effect.
[1] R. A. Soref, “Silicon-based optoelectronics,” Proc. IEEE, vol. 81, pp. 1687–1706, 1993.
[2] Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall, and P. Kaiser, “Vibrational mode assignments,” Appl. Phys. Lett., vol.23, pp.45, 1973.
[3] G. T. Reed, and B. L. Weiss,“Electro-optic effect in He+-implanted optical waveguides in LiNbO3,” Electron. Lett. vol.23, pp. 424-425, 1987.
[4] R. M. Emmons, B. N. Kurdi, and D. G. Hall, “Buried-oxide silicon -on-insulator structures 1: optical waveguide characteristics,” IEEE J. Quant. Electron., vol. 28, pp. 157-163, 1992.
[5] M. Ghioni, A. Lacaita, G. Ripamonti, and S. Cova, “All-silicon avalanche photodiode sensitive at 1.3μm with picosecond time resolution,” IEEE J. Quant. Electron., vol. 28, pp. 2678-2681, 1992.
[6] A. Sciuto, S. Libertino, S. Coffa, G. Coppola, “A miniaturizable Si-based electro-optical modulator working at 1.5μm,” Appl. Phys. Lett., vol.86, pp.201115-1-201115-3, 2004.
[7] Z. Zhao, A. H. Chen, E. K. Liu and G. Z. Li, “Silicon-on-insulator asymmetric optical switch based on total internal reflection,” IEEE Photon. Technol. Lett., vol. 9, pp. 1113-1115, 1997.
[8] Liu, R. Jones, L. Liao, D. S. Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature.,vol. 427, pp.615-618, 2004.
[9] Splett, and K. Petermann, “Low loss single-mode optical waveguide with large cross-section in standard epitaxial silicon,” IEEE Photon. Technol. Lett., vol. 6, no. 3, pp. 425-427, 1994.
[10] R. Hemenway, O. Solgaard, and D. M. Bloom, “All-silicon integrated optical modulator for 1.3 mm fiber-optic interconnects,” Appl. Phys. Lett., vol. 55, pp. 349–350, 1989.
[11] G. Cocorullo, F. G. Della Corte, M. Iodice, T. Polichetti, I. Rendina, P. M. Sarro, “Low Loss All-Silicon Single Mode Optical Waveguide with Small Cross- Section,” Fiber and Integrated Optics, vol. 20, pp. 207–219, 2001.
[12] G. T. Reed, and A. P. Knights, Silicon Photonics an Introduction. Ch ichester: John. Wiley & Sons, Ltd, 2004, ch 2.
[13] S. O. Kasap, Optoelectronics and Photonics Principles and Pratices. Upper Saddle River: NJ:Prentice Hall, 2001.
[14] http://en.wikipedia.org/wiki/Snell%27s_law.
[15] T. Tamir, Integrated Optics. Berlin: Springer, 2002.
[16] C. R. Pollock, Fundamentals of optoelectronics. Chicago: Irwin, 1995.
[17] G. T. Reed, and A. P. Knights, Silicon Photonics an Introduction. Chi-chester: John. Wiley & Sons, Ltd, 2004, ch 4.
[18] R. A. Soref, J. Schmidtchen, K. Petermann, “Large Single-Mode Rib Waveguides in GeSi-Si and Si-on-SiO2,” J. Quantum Electronics, vol. 27, no. 8, pp. 1971-1974, 1991.
[19] S. Pogossian, L. Vescan , A. Vonsovici, “The Single Mode Condition for Semiconductor Rib Waveguides with Large Cross Section,” J. Lightwave Technol., vol. 16, no. 10, pp. 1851-1853, 1998.
[20] G. Rickman, G. T. Reed, F. Namavar, “Silicon-on-Insulator Optical Rib Waveguide Loss and Mode Characteristics,” J. Lightwave Technol., vol. 12, no. 10, pp. 1771-1776, 1994.
[21] R. A. Soref, R. R. Bennett, “Electrooptical effects in Silicon,” IEEE Journal of Quanum Electronics, vol. 23, no. 1, pp. 123-129, 1987.
[22] L. B. Soldano and E. C. M. Pennings , “ Optical multi-mode interfer- ence devices based on self-imaging : principles and applications,” J. Lightwave Technol. ,vol. 13, pp.615-627, 1995.
[23] L. Zhe Jin and Gangding Peng, “New criterion for designing silica multimode interference power splitters,” Fiber and Integrated Optics, vol.24, pp.501-509, 2005.
[24] K. Wörhoff, L. T. H. Hilderink, A. Driessen, and P. V. Lambeck, “Silicon oxynitride - a versatile material for integrated optical appli- cations,” J. Electrochem.Soc., vol.149, pp. F85-F91, 2002.
[25] R. A. Soref, and J. P. Lorenzo, “All-Silicon Active and Passive Guid- ed Wave Components for λ = 1.3μ m and 1.6μm,” IEEE Journal Of Quantum Electronics, vol. 22, pp.873-879, June 1986.
[26] G. Craciun, M. A. Blauw, E. vander Drift, P. MSarro and P. J. French “Temperature influence on etching deep holes with SF6/O2 cryogenic plasma,” J. Micromech. Microeng., vol 12, pp.390–394, 2002.
[27] N. N. Toan, Spin-on glass materials and applications in advanced IC technologies, University Twente, 1999.
[28] 陳建人,「微機電系統技術與應用」,行政院新聞局出版事業登記證局版臺頁字第2261號;92年7月,pp.61-64。
[29] S. M. Jackson, P. D. Hewitt, G. T. Reed, C. K. Tang, A. G. R. Evans, J. Clark, C. Aveyard, and F. Namavar, “A novel optical phase modulator design suitable for phased arrays,” J. Lightwave Technol., vol 16, pp. 2016–2019, 1998.
[30] P. Dainesi, L. Thevenaz, P. H. Robert, “Intensity modulator in two Mach-Zehnder interferometers using plasma dispersion in silicon -on-insulator,” Appl. Phys. B, vol. 73, pp.475–478, 2001.