簡易檢索 / 詳目顯示

研究生: 張煜群
Chang, Yu-Chun
論文名稱: 利用自由載子消散效應設計與製作一分二多模干涉之馬赫-任德爾光調變器在SOS與SOI基板上
Design and Fabrication of the1x2 MMI-Based MZI Optical Modulators on SOS (Silicon-On-Silicon) and SOI (Silicon-On-Insulator) Utilizing the Plasma Dispersion Effect
指導教授: 莊文魁
Chuang, Ricky W.
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 126
中文關鍵詞: SOI基板SOS基板熱光效應自由載子消散效應一分二馬赫任德爾光調變器
外文關鍵詞: silicon-on-silicon (SOS) substrate, silicon-on-insulator (SOI) substrate, thermo-optic effect, 1×2 MMI-coupled MZI optical modulator
相關次數: 點閱:103下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,主要研究在1.55微米的通訊波長下的矽之電光調變器上。在研究中採用SOD熱擴散方法製作p+-i-n+結構式光調變器。使用SOD技術優點包含低成本且簡易化非常適合用來取代傳統離子佈植。除此之外,SOD技術也能相容於現今的CMOS製程。
    在元件方面,利用分束傳播法設計並模擬一分二多模干涉架構下之馬赫-任德爾光調變器在Silicon-on-Silicon(SOS)基板上操作波於1.55μm波長,設計之後並製作。後來了解到,調變訊號藉由電流注入將導致兩個競爭調變機制互相作用,即熱光色散效應和自由載子消散效應。因此,兩者不同調變機制導致折射率變化量為反向。光波導調變器在不同調變長度下,靜態調變深度皆可高達100%,且本元件的頻率響應(f3dB)達336.5kHz。
    此外,上述元件已被製做出來且製做 Silicon-on-Insulator (SOI)基板上,並與上述SOS基板做比較。實驗結果顯示在不同調變長度下,靜態調變深度皆可高達100%、達第一個π相位皆只需約0.2W的輸入功率且上升時間與下降時間已小於50 ns、截止頻率(f3dB)已大於5MHz。
    最後,成功驗證出在SOI基板上製作1×2多模干涉架構下之馬赫-任德爾光調變器的調變機制為自由載子消散效應主導。

    In this thesis, the attention is focused on an electrooptic Si-based modulator working at 1.55μm. The spin-on-dopant (SOD) thermal diffusion method was adopted to fabricate the optical modulator based on the p+-i-n+ structure. The advantages of using the SOD process include low cost and simplicity, and this very technique is therefore highly suitable to be used as an substitute for the conventional ion implantation. In addition, the SOD method is also compatible with the standard CMOS process.
    On the device side, the 1 x 2 multimode interference (MMI) based Mach-Zehnder (MMI-MZI) modulators on silicon-on-silicon (SOS) substrates operating at 1.55μm were designed and simulated using the numerical beam propagation method (BPM), before subjecting the final design for device fabrication. It was later realized that the signal modulation by current injection led to two competitive modulation mechanisms in play, namely, the thermo-optic and plasma dispersion effects. Consequently, two opposing mechanisms would bring about the opposite refractive index changes. The aforementioned modulators with different modulation lengths being tested would eventually render the modulation depth closes to 100% and 3dB frequency response up to 336.5 kHz. Furthermore, the same devices mentioned previously were also fabricated and later tested on silicon-on-insulator (SOI) substrates for performance comparison. The experimental results demonstrate that a nearly 100% modulation depth was achieved for modulators with different modulation lengths, and only 0.2 W of input power was needed for devices to reach first phase shift. Finally, the devices on SOI substrates operated significantly faster in terms of signal modulation as the rise/fall times smaller than 50 ns and the 3dB cutoff frequency of greater than 5 MHz were measured, outright showing that the signal modulation was dominated by plasma dispersion effect.

    目錄 中文摘要…………………………………………………………………I 英文摘要………………………………………………………...……..III 致謝……………………………………………………………………...V 目錄………………………………………………………………...….VII 表目錄…………………………………………………………………..XI 圖目錄…………………………………………………………..……..XII 第一章-導論 1-1矽光調變器背景 1 1-2論文簡介 5 第二章-理論背景 2-1斯涅爾定律和內部射 6 2-1-1斯涅爾定律 6 2-1-2內部全反射 7 2-2 古斯-亨琴移動 8 2-3 大的單模脊形波導 9 2-4 矽光調變機制 13 2-4-1波克爾效應 13 2-4-2克爾效應 13 2-4-3夫蘭瑞凱力新效應 14 2-4-4自由載子消散效應 15 2-4-5熱光效應 17 2-5對稱多模干涉波導 18 第三章1×2 MMI MZI光調變器製作在SOS基板上 3-1元件結構 22 3-2元件模擬 25 3-3製造過程 30 3-3-1基板清洗 32 3-3-2黃光微影 32 3-3-3矽蝕刻 33 3-3-4電漿輔助化學氣相沉積(PECVD)沉積SiO2 45 3-3-5溼蝕刻二氧化矽 47 3-3-6 Spin on dopant(SOD)技術 48 3-3-7沉積金屬 49 3-3-8拋光研磨 51 3-4展阻量測 52 3-5電性量測 53 3-6光路量測 54 3-6-1CCD量測 54 3-6-2LIV量測 57 3-6-3響應時間 66 3-6-4頻率響應 68 3-7自由載子消散效應與熱光性應討論 69 第四章1×2 MMI MZI光調變器製作在SOI基板上 4-1元件結構 71 4-2元件模擬 73 4-3製作流程 79 4-4電性量測 82 4-5 CCD量測 84 4-6退火前量測 87 4-6-1 LIV量測 87 4-6-2調變深度與消光比 95 4-7退火後量測 103 4-8實驗與模擬 112 4-9響應時間 113 4-10自由載子消散效應與熱光性應討論 118 第五章 結論與未來工作 5-1結論 120 5-2未來工作 122 參考文獻 123   表目錄 表1-1矽的光調變機制 4 表1-2三種不同結構的矽基材比較 4 表3-1 1x2MMI-based MZI SOS之製作過程 30 表3-2 ICP垂直矽蝕刻速率與側向蝕刻速率關係 44 表3-3 PECVD沉積SiO2參數表 46 表3-4直流濺鍍沉積鋁薄膜參數 50 表4-1 1x2MMI-based MZI SOI之製作過程 79 表5-1實驗結果與文獻特性比較 121   圖目錄 圖1-1矽基材光積體電路“超級晶片” 3 圖1-2各種波長的光訊號衰減 3 圖2-1光線在兩兩不同介質介面處反射與折射 6 圖2-2在較密介質中行進的光波入射到較疏的介質中,隨入射角(θi) 對θc的關係 7 圖2-3傳遞在非對稱的平面波導中同時表示包覆層的穿透 8 圖2-4脊形波導的橫截面圖 10 圖2-5 Beam Propagation Method (BPM)模擬脊形波導 11 圖2-6單模條件的實驗資料 12 圖2-7矽在波長1.3μm、溫度300K時,克爾效應為外加電場的函數 14 圖2-8夫蘭瑞-凱力新效應在矽300K 15 圖2-9步級折射率多模波導的二維代表性;(有效)折射率橫向剖面,脊形邊界和坐標系統的俯視圖 21 圖2-10振幅規一化橫向光場分佈曲線的範例所對應到步級折射率波 導的前九個波導模態 21 圖3-1 1x2 MMI-Based MZI on SOS光調變器之俯視圖…………...…23 圖3-2 p+-n--n+光調變器剖面圖為圖3-1中之AB虛線處...…………...23 圖3-3 1x2MMI-MZI光調變器之SEM圖像….…...………….…….…23 圖3-4使用展阻量測(SRP)得到SOS基板摻雜濃度與深度關係 24 圖3-5 隨著不同波長摻雜濃度(N)與折射率變化(Δn)關係.………….24 圖3-6 MZI調變長度之500μm BPM layout….……………….....….…25 圖3-7折射率分佈圖….……………………..…………………....….…25 圖3-8 BPM模擬之Y橫切面圖(無相位差)….…….………….…….…27 圖3-9 BPM模擬之Y橫切面圖(相位差π)……………...………........27 圖3-10調變長度500μm未有π相位時,傳波距離與光強度關係圖.. 28 圖3-11調變長度500μm有π相位時,傳波距離與光強度關係圖….…28 圖3-12調變長度1000μm有π相位時,傳波距離與光強度關係圖.…..29 圖3-13調變長度2000μm有π相位時,傳波距離與光強度關係圖.. 29 圖3-14 1x2MMI-based MZI SOS基材之製作流程圖……...............…31 圖3-15 Oxford Plasmalab System 100電漿輔助化學氣相沉積和感應式耦合電漿(ICP)雙反應腔體.. 34 圖3-16感應式耦合電漿蝕刻系統 34 圖3-17蝕刻區域示意圖 35 圖3-18 ICP 15℃,SF6: 100 sccm O2: 9 sccm SEM圖………..........…35 圖3-19 ICP 15℃, SF6: 80sccm O2: 10 sccm SEM圖………….....…36 圖3-20 ICP 15℃,SF6: 80 sccm O2: 11 sccm SEM圖…………......…36 圖3-21ICP 15℃,SF6: 80 sccm O2: 15 sccm SEM圖……………...…37 圖3-22ICP 15℃,SF6: 50 sccm O2: 11 sccm SEM圖…...............……37 圖3-23 ICP 15℃,SF6: 50 sccm O2: 12 sccm SEM圖…...………...…38 圖3-24 ICP 15℃,SF6: 50 sccm O2: 12 sccm SEM圖…...………...…38 圖3-25 ICP 15℃,SF6: 50 sccm O2: 0 sccm SEM圖……………..…..39 圖3-26 ICP -110℃, SF6: 100 sccm O2: 9 sccm SEM圖.............……39 圖3-27 ICP -110℃,SF6: 50 sccm O2: 0 sccm SEM圖…………….…40 圖3-28 ICP -110℃,SF6: 50 sccm O2: 5 sccm SEM圖…………….…40 圖3-29 ICP -110℃,SF6: 50 sccm O2: 9 sccm SEM圖………….……41 圖3-30 ICP -110℃,SF6: 50 sccm O2: 12 sccm SEM圖…………...…41 圖3-31 ICP -120℃,SF6: 50 sccm O2: 9 sccm SEM圖…..…………...42 圖3-32 ICP -120℃,SF6: 50 sccm O2: 9 sccm SEM圖….……………42 圖3-33 ICP -120℃,SF6: 50 sccm O2: 12 sccm SEM圖…………...…43 圖3-34 不同溫度、氣體流量與矽側蝕關係圖……..………..……..…44 圖3-35 PECVD沉積系統圖……………………....……………………46 圖3-36 SOD製程概述…………………….………...……………….…48 圖3-37直流濺鍍操作機制……………………………………..………50 圖3-38 鑽石研磨片與Al2O3絨布墊…………..……….………….…..51 圖3-39 n型與p型摻雜濃度輪廓藉由展阻量測 52 圖3-40 Al金屬之I-V特性曲線圖………………..….….……………..53 圖3-41 Al金屬之I-V特性曲線log圖…………….…....…………..…53 圖3-42 CCD量測架構圖…………………………..…….……….….…54 圖3-43 CCD調變長度為 (a) 460μm;(b) 960μm;(C) 1960μm…..…56 圖3-44光、電流、電壓(LIV)與響應時間量測架構圖…….………….57 圖3-45調變長度為460μm之LIV圖……………………………....…58 圖3-46調變長度為960μm之LIV圖……………………………....…58 圖3-47調變長度為1960μm之LIV圖……………………………..…59 圖3-48調變長度460μm,調變深度與輸入功率關係圖…..…………..60 圖3-49調變長度960μm,調變深度與輸入功率關係圖….……......….61 圖3-50調變長度1960μm,調變深度與輸入功率關係圖…….……..61 圖3-51不同調變長度,調變深度與電流密度關係圖……….………..62 圖3-52調變長度460μm,消光比與輸入功率關係圖…...........…..…63 圖3-53調變長度960μm,消光比與輸入功率關係圖…………....……64 圖3-54調變長度1960μm,消光比與輸入功率關係圖………….……64 圖3-55不同調變長度,消光比與電流密度關係圖……….………….65 圖3-56 響應時間量測裝置架構圖 66 圖3-57響應時間圖……..………………………………………………67 圖3-58光響應與頻率響應關係圖………………………………..……68 圖4-1 1x2 MMI-Based MZI on SOI光調變器之俯視圖 72 圖4-2 n+-p--p+光調變器剖面圖為圖5-1中之CD虛線處………….…72 圖4-3 1000X光學顯微鏡下接觸波導橫截面…….………….…..……72 圖4-4 BPM模擬折射率與輸出光功率關係圖………….….…..…..…74 圖4-5調變長度500μm之橫截面圖…………………….…..…………74 圖4-6施加偏壓1伏特時,電子濃度分佈圖..……………....……….…75 圖4-7在X=45時,電子濃度與Y關係………………..…..……….……75 圖4-8施加偏壓1伏特時,電洞濃度分佈圖…...……….…..…....……76 圖4-9在X=45時,電洞濃度與Y關係……..………….….……………76 圖4-10模擬在不同施加偏壓下所得到載子濃度與折射率變化.. 77 圖4-11輸出光功率與載子濃度關係圖…………………………..……77 圖4-12 BPM 2-D模擬1×2 MMI MIZ on-state……..…………….……78 圖4-13 BPM 2-D模擬1×2 MMI-MZI off-state……..….………..….…78 圖4-14 1x2MMI-based MZI SOI基材之製作流程圖…………………80 圖4-15 1x2MMI-based MZI在SOI基板上之黃光製程………....……81 圖4-16 KEITHLEY 2612 System SourceMeter………..................……82 圖4-17 退火前,Ti/Al合金I-V特性曲線圖……………....……….…83 圖4-18 退火後,Ti/Al合金I-V特性曲線圖………………....….……83 圖4-19 CCD量測架構圖……………….………………………..…..…84 圖4-20 CCD量測系統實際架構圖…………….…….………….…..…85 圖4-21 調變長度為(a) 460μm;(b) 960μm;(C) 1960μm……….…...86 圖4-22 光電、電流、電壓(LIV)量測系統架構圖……………….……87 圖4-23 調變長度460μm,光功率與施加電壓關係圖.. 89 圖4-24 調變長度460μm,光功率與電流關係圖.. 89 圖4-25調變長度460μm,光功率與輸入功率關係圖.. 90 圖4-26調變長度960μm,光功率與施加電壓關係圖.. 90 圖4-27調變長度960μm,光功率關係與電流關係圖.. 91 圖4-28調變長度960μm,光功率與輸入功率關係圖.. 91 圖4-29 調變長度1960μm,光功率與施加電壓關係圖.. 92 圖4-30 調變長度1960μm,光功率與電流關係圖.. 92 圖4-31調變長度960μm,光功率與輸入功率關係圖.. 93 圖4-32不同調變長度所對應光功率與電流密度關係圖.. 93 圖4-33不同調變長度所對應相位差變化量與電流密度關係圖.. 94 圖4-34調變長度460μm,調變深度與輸入功率關係圖.. 96 圖4-35調變長度960μm,調變深度與輸入功率關係圖.. 96 圖4-36調變長度1960μm,調變深度與輸入功率關係圖……….…….97 圖4-37不同調變長度下,調變深度與輸入功率關係圖…….….…..…98 圖4-38 圖4-37的第一個調變深度……………………………..……..98 圖4-39 調變長度460μm,消光比與輸入功率關係圖……….………100 圖4-40 調變長度960μm,消光比與輸入功率關係圖………….……100 圖4-41 調變長度1960μm,消光比與輸入功率關係圖…….……....101 圖4-42不同調變長度,消光比與電流密度關係圖…….….............…102 圖4-43圖4-42的第一個衰減量…….……….……………………….102 圖4-44 Ti/Al熱退火流程…….………………………..………..…….103 圖4-45調變長度460μm,光功率與施加電壓關係圖…….……..…...104 圖4-46調變長度460μm,光功率與電流關係圖….……………….....104 圖4-47調變長度460μm,光功率與輸入功率關係圖.. 105 圖4-48調變長度460μm,消光比與輸入功率關係圖.. 105 圖4-49調變長度960μm,光功率與施加電壓關係圖.. 106 圖4-50調變長度960μm,光功率與施加電壓關係圖.. 106 圖4-51調變長度960μm,光功率與電流關係圖….…………...…......107 圖4-52調變長度960μm,光功率與輸入功率關係圖……………….107 圖4-53退火後調變長度960μm,消光比與輸入功率關係圖.. 108 圖4-54退火後調變長度960μm,調變深度與輸入功率關係圖.. 108 圖4-55 退火後調變長度1960μm,光功率與施加電壓關係圖.. 109 圖4-56 退火後調變長度1960μm,光功率與電流關係圖.. 109 圖4-57 退火後調變長度1960μm,光功率與輸入功率關係圖.. 110 圖4-58 退火後調變長度1960μm,消光比與輸入功率關係圖.. 110 圖4-59 退火後調變長度1960μm,調變深度與輸入功率關係圖.. 111 圖4-60退火後,不同調變長度所對應相位變化量與電流密度關係圖.. 111 圖4-61調變長度460μm模擬與實驗結果比較....................................112 圖4-62響應時間量測裝置架構圖…………........................................113 圖4-63調變長度460μm響應時間圖………………...…………….....115 圖4-64調變長度960μm響應時間圖……………................................115 圖4-65調變長度960μm上升時間為56ns……….……………...........116 圖4-66調變長度960μm下降時間為56ns……….……………...........116 圖4-67調變長度1960μm響應時間圖…………...……………...........117 圖4-68光響應與頻率響應關係圖…………..……………….……….117 圖5-1提升自由載子消散機制方法..……………..………….……….122

    [1] R. A. Soref, “Silicon-based optoelectronics,” Proc. IEEE, vol. 81, pp. 1687–1706, 1993.
    [2] Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall, and P. Kaiser, “Vibrational mode assignments,” Appl. Phys. Lett., vol.23, pp.45, 1973.
    [3] G. T. Reed, and B. L. Weiss,“Electro-optic effect in He+-implanted optical waveguides in LiNbO3,” Electron. Lett. vol.23, pp. 424-425, 1987.
    [4] R. M. Emmons, B. N. Kurdi, and D. G. Hall, “Buried-oxide silicon -on-insulator structures 1: optical waveguide characteristics,” IEEE J. Quant. Electron., vol. 28, pp. 157-163, 1992.
    [5] M. Ghioni, A. Lacaita, G. Ripamonti, and S. Cova, “All-silicon avalanche photodiode sensitive at 1.3μm with picosecond time resolution,” IEEE J. Quant. Electron., vol. 28, pp. 2678-2681, 1992.
    [6] A. Sciuto, S. Libertino, S. Coffa, G. Coppola, “A miniaturizable Si-based electro-optical modulator working at 1.5μm,” Appl. Phys. Lett., vol.86, pp.201115-1-201115-3, 2004.
    [7] Z. Zhao, A. H. Chen, E. K. Liu and G. Z. Li, “Silicon-on-insulator asymmetric optical switch based on total internal reflection,” IEEE Photon. Technol. Lett., vol. 9, pp. 1113-1115, 1997.
    [8] Liu, R. Jones, L. Liao, D. S. Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature.,vol. 427, pp.615-618, 2004.
    [9] Splett, and K. Petermann, “Low loss single-mode optical waveguide with large cross-section in standard epitaxial silicon,” IEEE Photon. Technol. Lett., vol. 6, no. 3, pp. 425-427, 1994.
    [10] R. Hemenway, O. Solgaard, and D. M. Bloom, “All-silicon integrated optical modulator for 1.3 mm fiber-optic interconnects,” Appl. Phys. Lett., vol. 55, pp. 349–350, 1989.
    [11] G. Cocorullo, F. G. Della Corte, M. Iodice, T. Polichetti, I. Rendina, P. M. Sarro, “Low Loss All-Silicon Single Mode Optical Waveguide with Small Cross- Section,” Fiber and Integrated Optics, vol. 20, pp. 207–219, 2001.
    [12] G. T. Reed, and A. P. Knights, Silicon Photonics an Introduction. Ch ichester: John. Wiley & Sons, Ltd, 2004, ch 2.
    [13] S. O. Kasap, Optoelectronics and Photonics Principles and Pratices. Upper Saddle River: NJ:Prentice Hall, 2001.
    [14] http://en.wikipedia.org/wiki/Snell%27s_law.
    [15] T. Tamir, Integrated Optics. Berlin: Springer, 2002.
    [16] C. R. Pollock, Fundamentals of optoelectronics. Chicago: Irwin, 1995.
    [17] G. T. Reed, and A. P. Knights, Silicon Photonics an Introduction. Chi-chester: John. Wiley & Sons, Ltd, 2004, ch 4.
    [18] R. A. Soref, J. Schmidtchen, K. Petermann, “Large Single-Mode Rib Waveguides in GeSi-Si and Si-on-SiO2,” J. Quantum Electronics, vol. 27, no. 8, pp. 1971-1974, 1991.
    [19] S. Pogossian, L. Vescan , A. Vonsovici, “The Single Mode Condition for Semiconductor Rib Waveguides with Large Cross Section,” J. Lightwave Technol., vol. 16, no. 10, pp. 1851-1853, 1998.
    [20] G. Rickman, G. T. Reed, F. Namavar, “Silicon-on-Insulator Optical Rib Waveguide Loss and Mode Characteristics,” J. Lightwave Technol., vol. 12, no. 10, pp. 1771-1776, 1994.
    [21] R. A. Soref, R. R. Bennett, “Electrooptical effects in Silicon,” IEEE Journal of Quanum Electronics, vol. 23, no. 1, pp. 123-129, 1987.
    [22] L. B. Soldano and E. C. M. Pennings , “ Optical multi-mode interfer- ence devices based on self-imaging : principles and applications,” J. Lightwave Technol. ,vol. 13, pp.615-627, 1995.
    [23] L. Zhe Jin and Gangding Peng, “New criterion for designing silica multimode interference power splitters,” Fiber and Integrated Optics, vol.24, pp.501-509, 2005.
    [24] K. Wörhoff, L. T. H. Hilderink, A. Driessen, and P. V. Lambeck, “Silicon oxynitride - a versatile material for integrated optical appli- cations,” J. Electrochem.Soc., vol.149, pp. F85-F91, 2002.
    [25] R. A. Soref, and J. P. Lorenzo, “All-Silicon Active and Passive Guid- ed Wave Components for λ = 1.3μ m and 1.6μm,” IEEE Journal Of Quantum Electronics, vol. 22, pp.873-879, June 1986.
    [26] G. Craciun, M. A. Blauw, E. vander Drift, P. MSarro and P. J. French “Temperature influence on etching deep holes with SF6/O2 cryogenic plasma,” J. Micromech. Microeng., vol 12, pp.390–394, 2002.
    [27] N. N. Toan, Spin-on glass materials and applications in advanced IC technologies, University Twente, 1999.
    [28] 陳建人,「微機電系統技術與應用」,行政院新聞局出版事業登記證局版臺頁字第2261號;92年7月,pp.61-64。
    [29] S. M. Jackson, P. D. Hewitt, G. T. Reed, C. K. Tang, A. G. R. Evans, J. Clark, C. Aveyard, and F. Namavar, “A novel optical phase modulator design suitable for phased arrays,” J. Lightwave Technol., vol 16, pp. 2016–2019, 1998.
    [30] P. Dainesi, L. Thevenaz, P. H. Robert, “Intensity modulator in two Mach-Zehnder interferometers using plasma dispersion in silicon -on-insulator,” Appl. Phys. B, vol. 73, pp.475–478, 2001.

    下載圖示 校內:2011-09-21公開
    校外:2012-09-21公開
    QR CODE