簡易檢索 / 詳目顯示

研究生: 蔡伃捷
Tsai, Yu-Jie
論文名稱: 應用模糊理論探討髮型之視覺評價研究
Application of Fuzzy Theory in Exploring Visual Evaluation of Hairstyles Research
指導教授: 蕭世文
Hsiao, Shih-Wen
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 工業設計學系
Department of Industrial Design
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 104
中文關鍵詞: 模糊理論模糊聚類分析語意差異法髮型風格評價
外文關鍵詞: Fuzzy Theory, Fuzzy Cluster Analysis, Semantic Difference Method, Hair Style Evaluation
相關次數: 點閱:31下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 髮型,作為我們外在形象的重要組成因素之一,往往能影響他人對我們的感知與認知。選擇一款與自我形象相符的髮型,不僅能彰顯出個人獨特的風格,更能有效地傳達我們希望展現的形象訊息。在打造理想髮型的過程中,消費者通常對髮型的描述往往是模糊且主觀的,他們可能會用“自然的”、“浪漫的”等模糊的詞彙來描述,而這些詞彙對設計師來說可能並不明確,再加上每個人對這些詞彙的理解也可能截然不同,其次,視覺想像與現實之間的差異也是一個問題。因此,消費者與髮型設計師之間的溝通至關重要,其關鍵不僅僅在於單向的溝通,更在於彼此之間的相互理解。

    為了讓消費者更準確地傳達他們心中的理想,同時使設計師能將其專業技能應用於滿足消費者的特殊需求,本研究將藉由感性工學理論,利用不同髮型與人之不同視覺意象評價進行調查。本研究將髮型視覺相關的項目作為參數,排列出不同的髮型組合,並利用Stable Diffusion和My Edit的AI圖像生成技術產生髮型圖像。接著,透過問卷調查的方式收集消費者對於不同髮型之視覺意象評價,並應用模糊聚類分析對所收集的資料進行進一步運算與量化。研究結果表明,每一個雷達圖顯示了該組髮型圖像對應之形容詞指標,證明了這些形容詞與髮型圖像之間的關聯性,這可以提供消費者在選擇髮型前的參考,並搭建消費者與設計師之間的溝通橋樑。

    Hairstyle, as one of the important components of our external image, often affects the perception and cognition of others. Choosing a hairstyle that matches our self-image not only reveals our unique style but also effectively conveys the message of the image we wish to present. In the process of creating the ideal hairstyle, consumers often have vague and subjective descriptions of hairstyles, using vague terms such as "natural" and "romantic" that may not be clear to the designer, plus the fact that These terms may not be clear to designers, plus each person's interpretation of these terms may be very different, and secondly, the difference between visualization and reality is also an issue. Therefore, communication between the consumer and the hairstylist is crucial, and the key is not only one-way communication but also mutual understanding.
    To allow consumers to more accurately convey the ideals they have in mind, and at the same time to enable designers to apply their professional skills to satisfy the specific needs of consumers, this study will investigate the use of different hairstyles with different visual imagery evaluations of human beings by utilizing the theory of perceptual engineering. In this study, hairstyle visualization-related items are used as parameters to arrange different combinations of hairstyles, and hairstyle images are generated by using Stable Diffusion and My Edit's AI image generation technology. Then, a questionnaire survey was conducted to collect consumers' evaluations of the visual imagery of different hairstyles, and fuzzy cluster analysis was applied to further calculate and quantify the collected data. The results of the study show that each radar graph shows the adjective indicators corresponding to the group of hairstyle images, proving the correlation between these adjectives and the hairstyle images, which can provide a reference for consumers before choosing a hairstyle and build a communication bridge between consumers and designers.

    摘要 i SUMMARY ii ACKNOWLEDGEMENTS iii TABLE OF CONTENTS iv LIST OF TABLES vi LIST OF FIGURES vii LIST OF SYMBOLS AND ABBREVIATIONS viii CHAPTER 1 INTRODUCTION 1 1.1 Research Background 1 1.2 Research Motivation 2 1.3 Research Purpose 3 1.4 Research Restriction 4 1.5 Research Structure 5 CHAPTER 2 LITERATURE REVIEW 7 2.1 Hair Style Trends 7 2.1.1 Hairstyle Type 9 2.2 Psychology 10 2.2.1 Cognitive Psychology 11 2.2.2 Emotional awareness 14 2.3 Kansei Engineering 16 2.3.1 Application of Kansei Engineering 17 2.4 Fuzzy Theory 18 2.4.1 Fuzzy Set 19 2.5 Artificial Intelligence Generated Content 20 CHAPTER 3 THEORETICAL BASIS 26 3.1 BlackBox System Analysis 26 3.2 Fuzzy clustering analysis 28 3.3 Semantic differential method 30 3.4 Factor analysis 32 CHAPTER 4 RESEARCH PROCESS AND IMPLEMENTATION 35 4.1 Research Process Description 35 4.2 Hair Style Characteristics 38 4.3 Hair Image Creation 39 4.4 Style Vocabulary Creation 45 4.5 Factor Analysis 47 4.6 Fuzzy C-means 50 CHAPTER 5 RESULTS AND ANALYZE 51 5.1 Results of SPSS Factor Analysis 51 5.1.1 Renaming of factors 55 5.2 Explanation of the results of hair image creation analysis 55 5.3 Analytical Results of Fuzzy C-means 58 CHAPTER 6 CONCLUSION 68 6.1 Research Results and Contributions 68 6.2 Research and Development 69 REFERENCES 71 APPENDIX A Hair Image Generation Results 74 APPENDIX B Stable Diffusion User Interface Complete Diagram 83 APPENDIX C Questionnaire on Hairstyle Style Adjective Vocabulary - Part 1 84 APPENDIX D Questionnaire on Hairstyle Style Adjective Vocabulary - Part 2 86 APPENDIX E FCM Code 88

    Bughin, J., Hazan, E., Sree Ramaswamy, P., DC, W., & Chu, M. (2017). Artificial intelligence the next digital frontier.
    Ekman, P. (1992). An Argument for Basic Emotions. Cognition and Emotion, 6(3–4), 169–200. Scopus. https://doi.org/10.1080/02699939208411068
    Gaston-Breton, C., Lemoine, J. E., Voyer, B. G., & Kastanakis, M. N. (2021). Pleasure, meaning or spirituality: Cross-cultural differences in orientations to happiness across 12 countries. Journal of Business Research, 134, 1–12. https://doi.org/10.1016/j.jbusres.2021.05.013
    Hsiao, S.-W., Chiu, F.-Y., & Hsu, H.-Y. (2008). A computer-assisted colour selection system based on aesthetic measure for colour harmony and fuzzy logic theory. Color Research and Application, 33(5), 411–423. Scopus. https://doi.org/10.1002/col.20417
    Hsiao, S.-W., Wang, M.-F., & Chen, C.-W. (2017). Time pressure and creativity in industrial design. International Journal of Technology and Design Education, 27(2), 271–289. Scopus. https://doi.org/10.1007/s10798-015-9343-y
    Khalid, H. M. (2006). Embracing diversity in user needs for affective design. Applied Ergonomics, 37(4 SPEC. ISS.), 409–418. Scopus. https://doi.org/10.1016/j.apergo.2006.04.005
    López, Ó., Murillo, C., & González, A. (2021). Systematic literature reviews in kansei engineering for product design—A comparative study from 1995 to 2020†. Sensors, 21(19). Scopus. https://doi.org/10.3390/s21196532
    Nagamachi, M. (2002). Kansei engineering as a powerful consumer-oriented technology for product development. Applied Ergonomics, 33(3), 289–294. Scopus. https://doi.org/10.1016/S0003-6870(02)00019-4
    P. K. K. N. & M. L. Gavrilova. (2022). Latent Personality Traits Assessment From Social Network Activity Using Contextual Language Embedding. IEEE Transactions on Computational Social Systems, 9(2), 638–649. https://doi.org/10.1109/TCSS.2021.3108810
    Wagemans, J. (2005). Cognitive Psychology. In K. Kempf-Leonard (Ed.), Encyclopedia of Social Measurement (pp. 351–359). Elsevier. https://doi.org/10.1016/B0-12-369398-5/00480-1
    Wang, M.-F., Hsiao, S.-W., & Zhong, Y. (2019). A study on the evaluation method of fuzzy theory on cultural and creative products in Taiwanese aborigines’ cultures. 55–61. Scopus. https://doi.org/10.1145/3349341.3349368
    Williamson, J. M. (2018). Chapter 1—Individual Differences. In J. M. Williamson (Ed.), Teaching to Individual Differences in Science and Engineering Librarianship (pp. 1–10). Chandos Publishing. https://doi.org/10.1016/B978-0-08-101881-1.00001-7
    Wu, F., Hsiao, S.-W., & Lu, P. (2024). An AIGC-empowered methodology to product color matching design. Displays, 81, 102623. https://doi.org/10.1016/j.displa.2023.102623
    傅詩婷. (2014). 應用色彩審美度於色彩意象與膚色配色之研究 [國立成功大學]. 工業設計學系: Vol. 碩士. 臺灣博碩士論文知識加值系統. https://hdl.handle.net/11296/t68594
    陳君葳. (n.d.). 應用模糊理論於產品造形及配色之研究.
    闕頌廉. (1991). 應用模糊數學. 科技圖書股份有限公司
    簡召金(1995). 工業設計方法學.北京:北京理工大學出版社

    hannah coates, & Jasmine lee (Eds.). (2024, February 5). 2024髮型趨勢VOGUE TAIWAN.
    https://www.vogue.com.tw/article/%E4%B8%AD%E9%95%B7%E9%AB%AE%E5%8F%8A%E8%82%A9%E9%AE%91%E4%BC%AF-%E9%AB%AE%E5%9E%8B%E7%AF%84%E6%9C%AC
    陶嫚 曉 (Ed.). (2012). 長町三生:「感性工學是產品熱銷的金鑰!. 工業技術研究院.
    https://www.itri.org.tw/ListStyle.aspx?DisplayStyle=18_content&SiteID=1&MmmID=1036452026061075714&MGID=621022531037344322
    AI 局部重繪工具 . (2024). Myedit.
    https://myedit.online/tw/photo-editor/ai-replace

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE