簡易檢索 / 詳目顯示

研究生: 蔡宗諺
Cai, Zong-Yan
論文名稱: 功能性分析SAP130與FAF1蛋白質的交互作用
Functional analysis of the interaction between SAP130 and FAF1
指導教授: 林鼎晏
Lin, Ding-Yen
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技與產業科學系
Department of Biotechnology and Bioindustry Sciences
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 47
中文關鍵詞: Sin3A結合蛋白130Fas 受體結合蛋白
外文關鍵詞: Sin3A-associated protein 130, Fas-associated factor 1
相關次數: 點閱:66下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • SIN3A複合體於基因抑制表現中扮演重要的角色。它是利用組蛋白去乙烯酶1/2去除乙烯基而使得RNA合成酶無法集合上DNA轉錄出RNA達到基因表達抑制的效果。而SIN3A複合體的組成因子有RBBP4, RBBP7, SAP18, SAP180/ARID4B, SAP130, SAP25, SAP45與 SAP30/SAP30L。其中SAP130已被證明參與了SIN3A複合物的抑制基因表達作用。本實驗室在先前的研究中使用了酵母菌雜合實驗發現SAP130和Fas 受體結合蛋白FAF1有著蛋白質交互作用關係,並且發現SAP130可以被SUMO1修飾。另一方面, FAF1參與了多種的功能,像是調節細胞凋亡、蛋白質泛素化、NF-κB與Wnt/β-catenin路徑等,因此被認為是一個支架蛋白(scaffold protein)。在此研究中利用了SAP130 SUMO位點的突變體去了解SAP130的SUMO化在NF-κB 路徑與 Wnt/β-catenin路徑扮演什麼樣的角色。另外,本研究也使用酵母菌雙雜合系統(yeast two-hybrid screening)尋找是否還有其他能與SAP130進行交互作用的蛋白。在未來,本研究會繼續探討FAF1與Sin3A/SAP130複合體在細胞中扮演的角色。

    SIN3A complex plays an important role in gene silencing. It uses histone deacetylase 1/2 enzymatic activity to remove acetyl group on histone and prohibits RNA polymerase to initiate the transcription to repress gene expression. Several SIN3A complex co-factors have been identified including SAP18, SAP25, SAP45, SAP30/SAP30L, SAP130, SAP180/ARID4B and Rbbp4/7. Among them, Sin3A associated protein 130 (SAP130) has been known to be one of the most important factors affecting SIN3A-mediated transrepression. In our previous study, we have identified SAP130 as a novel Fas-associated factor (FAF)-1 interacting protein. Furthermore, we found that SAP130 protein can be modified by SUMO1. FAF1 is a scaffold protein that have been known to be involved in numerous of biological processes including apoptosis, protein ubiquitination, Wnt/β-catenin and NF-κB signaling pathways. In this study, I have characterized the role of SUMO-modified SAP130 in NF-κB and Wnt/β-catenin signaling. In addition, I have identified several novel SAP130 interacting partners by yeast two-hybrid screening. Further study will clarify the interplay between FAF1 and Sin3A/SAP130 functions in
    different cellular processes.

    中文摘要........................................................................................................... i 英文摘要.......................................................................................................... ii 誌謝.................................................................................................................. v 目錄................................................................................................................. vi 表目錄........................................................................................................... viii 圖目錄............................................................................................................. ix 附圖目錄.......................................................................................................... x 縮寫表............................................................................................................. xi 一、 研究背景.................................................................................................. 1 1-1蛋白質轉譯的重要性........................................................................ 1 1-2 Sin3A associated protein 130 (SAP130)............................................ 1 1-3 Fas-associated factor 1 (FAF1)........................................................... 3 1-4 Small ubiquent like modifier (SUMO)............................................... 6 1-5研究目的............................................................................................ 8 二、 材料與方法.............................................................................................. 9 2-1細胞培養............................................................................................ 9 2-2收取細胞裂解物與蛋白質定量...................................................... 10 2-3西方墨點法 (Western blot)............................................................. 11 2-4報導基因分析 (Reporter assay)...................................................... 12 2-5 Condition Medium使用與製造....................................................... 13 2-6酵母菌雙雜合 (Yeast two-hybrid assay)......................................... 14 2-7酵母菌雙雜合篩選系統(Yeast two-hybrid screening).................... 16 2-8 質體建構......................................................................................... 17 2-9 免疫螢光染色................................................................................. 19 2-10統計方法........................................................................................ 20 三、 結果....................................................................................................... 21 3-1 SAP130與FAF1 經由SUMO結構產生交互作用....................... 21 3-2 SAP130野生型與3KA突變型在細胞的座落位置....................... 21 3-3 SAP130 SUMOylation對於轉錄抑制的影響................................ 22 3-4 利用酵母菌雙雜合系統找尋SAP130的結合蛋白...................... 22 3-5 SAP130調節NF-κB路徑的影響................................................... 22 3-6 SAP130對調節Win/β-Catenin路徑的影響................................... 23 四、 討論........................................................................................................ 24 參考文獻........................................................................................................ 29 圖表................................................................................................................ 35 附圖................................................................................................................ 46  表目錄 表一、引子列表............................................................................................. 36   圖目錄 圖一、 SAP130與FAF1是經由SUMO的方式進行交互作用................. 37 圖二、 SAP130的三個SUMO位點並未改變細胞核中的分布................ 39 圖三、 Sumoylation並沒有影響SAP130的抑制基因轉錄作用............... 40 圖四、 利用酵母菌雜合系統找出SAP130新穎的交互作用蛋白............. 41 圖五、 SAP130 SUMOylation影響NF-κB轉錄抑制表達......................... 42 圖六、 SAP130 SUMOylation對於Wnt/β-catenin之轉錄活性分析......... 45   附圖目錄 附圖一、 SAP130全長之位置與找出的三個SUMO位點........................ 47

    林弘偉,探討Sin3A結合蛋白(SAP130)類泛素化修飾之調節分析,國立
    成功大學生物科技與產業科學系碩士論文,2018.

    Betarbet, R., Anderson, L.R., Gearing, M., Hodges, T.R., Fritz, J.J., Lah, J.J., and Levey, A.I. Fas-associated factor 1 and Parkinson's disease. Neurobiology
    Disease 31, 309-315, 2008.

    Carter, S., Bischof, O., Dejean, A., and Vousden, K.H. C-terminal modifications regulate MDM2 dissociation and nuclear export of p53. Nature Cell Biology 9,
    428-435, 2007.

    Chymkowitch, P., Nguéa P, A., and Enserink, J.M. SUMO‐regulated
    transcription: Challenging the dogma. BioEssays 37, 1095-1105, 2015.

    Cubeñas-Potts, C., and Matunis, M.J. SUMO: a multifaceted modifier of
    chromatin structure and function. Developmental Cell 24, 1-12, 2013.

    Droescher, M., Chaugule, V.K., and Pichler, A. SUMO rules: regulatory concepts and their implication in neurologic functions. Neuromolecular
    Medicine 15, 639-660, 2013.

    Eifler, K., and Vertegaal, A.C. SUMOylation-mediated regulation of cell cycle
    progression and cancer. Trends in Biochemical Sciences 40, 779-793, 2015.

    Fleischer, T.C., Yun, U.J., and Ayer, D.E. Identification and characterization of three new components of the mSin3A corepressor complex. Molecular and
    Cellular Biology 23, 3456-3467, 2003.

    Flotho, A., and Melchior, F. Sumoylation: a regulatory protein modification in
    health and disease. Annual Review of Biochemistry 82, 357-385, 2013.

    García., N., Wong, R.P., and Ulrich, H.D. Functions of ubiquitin and SUMO in DNA replication and replication stress. Frontiers in Genetics 7, 87,
    2016.

    Geoffroy, M.C., and Hay, R.T. An additional role for SUMO in ubiquitin-mediated proteolysis. Nature Reviews Molecular Cell Biology 10, 564-568,
    2009.

    Guo, B., Yang, S.H., Witty, J., and Sharrocks, A. Signalling pathways and the regulation of SUMO modification. Portland Press Limited 35, 1414-1418,
    2007.

    Hendriks, I.A., and Vertegaal, A.C. A comprehensive compilation of SUMO
    proteomics. Nature Reviews Molecular Cell Biology 17, 581, 2016.

    Hoege, C., Pfander, B., Moldovan, G.L., Pyrowolakis, G., and Jentsch, S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin
    and SUMO. Nature 419, 135-141, 2002.

    Holler, N., Zaru, R., Micheau, O., Thome, M., Attinger, A., Valitutti, S., Bodmer, J.L., Schneider, P., Seed, B., and Tschopp, J. Fas triggers an alternative, caspase-8–independent cell death pathway using the kinase RIP as effector
    molecule. Nature Immunology 1, 489-495, 2000.

    Huang, J., Yan, J., Zhang, J., Zhu, S., Wang, Y., Shi, T., Zhu, C., Chen, C., Liu, X., and Cheng, J. SUMO1 modification of PTEN regulates tumorigenesis by controlling its association with the plasma membrane. Nature Communications
    3, 1-12, 2012.

    Kang, H.J., Moon, H.S., and Chung, H.W. The expression of FAS-associated factor 1 and heat shock protein 70 in ovarian cancer. Obstetrics and Gynecology
    Science 57, 281-290, 2014.

    Kim, J.H., Park, M.E., Nikapitiya, C., Kim, T.H., Uddin, M.B., Lee, H.C., Kim, E., Ma, J.Y., Jung, J.U., Kim, C.J., and Lee, J.S. FAS-associated factor-1 positively regulates type I interferon response to RNA virus infection by
    targeting NLRX1. PLoS Pathogens 13, e1006398, 2017.

    Kim, T.H., Lee, H.C., Kim, J.H., Hewawaduge, C.Y., Chathuranga, K., Chathuranga, W.A.G., Ekanayaka, P., Wijerathne, H., Kim, C.J., Kim, E., and Lee, J.S. Fas-associated factor 1 mediates NADPH oxidase-induced reactive oxygen species production and proinflammatory responses in macrophages
    against Listeria infection. PLoS Pathogens 15, e1008004, 2019.

    Kinoshita, T., Kondoh, C., Hasegawa, M., Imamura, R., and Suda, T. Fas-associated factor 1 is a negative regulator of PYRIN-containing Apaf-1-like
    protein 1. International Immunology 18, 1701-1706, 2006.

    Lallemand B., V., Jeanne, M., Benhenda, S., Nasr, R., Lei, M., Peres, L., Zhou, J., Zhu, J., Raught, B., and de Thé, H. Arsenic degrades PML or PML-RARα through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nature Cell
    Biology 10, 547-555, 2008.

    Leblanc, B.P., and Stunnenberg, H.G. 9-cis retinoic acid signaling: changing partners causes some excitement. Genes and Development 9, 1811-1816, 1995.

    Lee, J.J., Park, J.K., Jeong, J., Jeon, H., Yoon, J.B., Kim, E.E., and Lee, K.J. Complex of Fas-associated factor 1 (FAF1) with valosin-containing protein (VCP)-Npl4-Ufd1 and polyubiquitinated proteins promotes endoplasmic reticulum-associated degradation (ERAD). Journal of Biological Chemistry
    288, 6998-7011, 2013.

    Liu, X., Yagi, H., Saeed, S., Bais, A.S., Gabriel, G.C., Chen, Z., Peterson, K.A., Li, Y., Schwartz, M.C., Reynolds, W.T., Saydmohammed, M., Gibbs, B., Wu, Y., Devine, W., Chatterjee, B., Klena, N.T., Kostka, D., de Mesy Bentley, K.L., Ganapathiraju, M.K., Dexheimer, P., Leatherbury, L., Khalifa, O., Bhagat, A., Zahid, M., Pu, W., Watkins, S., Grossfeld, P., Murray, S.A., Porter, G.A., Tsang, M., Martin, L.J., Benson, D.W., Aronow, B.J., and Lo, C.W. The complex genetics of hypoplastic left heart syndrome. Nature Genetics 49,
    1152-1159, 2017.

    Mattoscio, D., Segré, C.V., and Chiocca, S. Viral manipulation of cellular protein conjugation pathways: The SUMO lesson. World Journal of Virology
    2, 79, 2013.

    Nagy, L., Kao, H.Y., Chakravarti, D., Lin, R.J., Hassig, C.A., Ayer, D.E., Schreiber, S.L., and Evans, R.M. Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 89, 373-
    380, 1997.

    Nie, M., and Boddy, M.N. Cooperativity of the SUMO and ubiquitin pathways
    in genome stability. Biomolecules 6, 14, 2016.

    Park, M.Y., Jang, H.D., Lee, S.Y., Lee, K.J., and Kim, E. Fas-associated factor-1 inhibits nuclear factor-κB (NF-κB) activity by interfering with nuclear translocation of the RelA (p65) subunit of NF-κB. Journal of Biological
    Chemistry 279, 2544-2549, 2004.

    Park, M.Y., Moon, J.H., Lee, K.S., Choi, H.I., Chung, J., Hong, H.J., and Kim, E. FAF1 suppresses IκB kinase (IKK) activation by disrupting the IKK complex assembly. Journal of Biological Chemistry 282, 27572-27577, 2007.

    Pfander, B., Moldovan, G.L., Sacher, M., Hoege, C., and Jentsch, S. SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature
    436, 428-433, 2005.

    Ryu, S.W., Lee, S.J., Park, M.Y., Jun, J.I., Jung, Y.K., and Kim, E. Fas-associated factor 1, FAF1, is a member of Fas death-inducing signaling
    complex. Journal of Biological Chemistry 278, 24003-24010, 2003.

    Seeler, J.S., and Dejean, A. SUMO and the robustness of cancer. Nature
    Reviews Cancer 17, 184, 2017.

    Shen, T.H., Lin, H.K., Scaglioni, P.P., Yung, T.M., and Pandolfi, P.P. The mechanisms of PML-nuclear body formation. Molecular Cell 24, 331-339,
    2006.

    Shin, W., Lim, K.S., Kim, M.K., Kim, H.S., Hong, J., Jhee, S., Kim, J., Yoo, S., Chung, Y.T., Lee, J.M., and Cho, D.Y. A first-in-human study to investigate the safety, tolerability, pharmacokinetics, and pharmacodynamics of KM-819 (FAS-associated factor 1 inhibitor), a drug for Parkinson's disease, in healthy volunteers. Drug Design, Development and Therapy 13, 1011-1022, 2019.

    Smith, C.L., Matheson, T.D., Trombly, D.J., Sun, X., Campeau, E., Han, X., Yates III, J.R., and Kaufman, P.D. A separable domain of the p150 subunit of human chromatin assembly factor-1 promotes protein and chromosome associations with nucleoli. Molecular Biology of the Cell 25, 2866-2881, 2014.

    Song, E.J., Yim, S.H., Kim, E., Kim, N.S., and Lee, K.J. Human Fas-associated factor 1, interacting with ubiquitinated proteins and valosin-containing protein, is involved in the ubiquitin-proteasome pathway. Molecular and Cellular
    Biology 25, 2511-2524, 2005.

    Tatham, M.H., Geoffroy, M.C., Shen, L., Plechanovova, A., Hattersley, N., Jaffray, E.G., Palvimo, J.J., and Hay, R.T. RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nature Cell
    Biology 10, 538-546, 2008.

    Tirard, M., Almeida, O., Hutzler, P., Melchior, F., and Michaelidis, T. Sumoylation and proteasomal activity determine the transactivation properties of the mineralocorticoid receptor. Molecular and Cellular Endocrinology 268,
    20-29, 2007.

    Wang, C.H., Hung, P.W., Chiang, C.W., Lombès, M., Chen, C.H., Lee, K.H., Lo, Y.C., Wu, M.H., Chang, W.C., and Lin, D.Y. Identification of two independent SUMO-interacting motifs in Fas-associated factor 1 (FAF1): Implications for mineralocorticoid receptor (MR)-mediated transcriptional regulation. Biochimica et Biophysica Acta-Molecular Cell Research 1866,
    1282-1297, 2019.

    Wang, J., An, H., Mayo, M.W., Baldwin, A.S., and Yarbrough, W.G. LZAP, a putative tumor suppressor, selectively inhibits NF-κB. Cancer Cell 12, 239-
    251, 2007.

    Wei, G., Xu, Y., Peng, T., Yan, J., Wang, Z., and Sun, Z. Sanguinarine exhibits antitumor activity via up-regulation of Fas-associated factor 1 in non-small cell lung cancer. Journal of Biochemical and Molecular Toxicology 31, e21914,
    2017.

    Zhang, L., Zhou, F., Li, Y., Drabsch, Y., Zhang, J., van Dam, H., and ten Dijke, P. Fas-associated factor 1 is a scaffold protein that promotes β-transducin repeat-containing protein (β-TrCP)-mediated β-catenin ubiquitination and degradation. The Journal of Biological Chemistry 287, 30701-30710, 2012.

    Zhang, L., Zhou, F., van Laar, T., Zhang, J., van Dam, H., and Ten Dijke, P. Fas-associated factor 1 antagonizes Wnt signaling by promoting β-catenin
    degradation. Molecular Biology of the Cell 22, 1617-1624, 2011.

    Zheng, C.H., Wang, J.B., Lin, M.Q., Zhang, P.Y., Liu, L.C., Lin, J.X., Lu, J., Chen, Q.Y., Cao, L.L., and Lin, M. CDK5RAP3 suppresses Wnt/β-catenin signaling by inhibiting AKT phosphorylation in gastric cancer. Journal of
    Experimental and Clinical Cancer Research 37, 1-9, 2018.

    無法下載圖示 校內:2025-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE