簡易檢索 / 詳目顯示

研究生: 劉哲呈
Liu, Che-Cheng
論文名稱: 導電針尖因交流電場所致之粒子捕捉及流動現象
AC Electrokinetic Trapping and Flow around a Conducting Conical Tip
指導教授: 魏憲鴻
Wei, Hsien-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 126
中文關鍵詞: 錐形尖端膠體/分子捕獲噴流交流電熱流(ACET)螢光共振能量轉移(FRET)
外文關鍵詞: Conical tip, colloidal/molecular trapping, jetting, AC electrothermal flow (ACET), Fluorescence Resonance Energy Transfer (FRET)
相關次數: 點閱:69下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中開發了一種新的電動微流體裝置,該裝置由鎢絲所製成的尖銳導電針尖組成,利用尖端周圍的強電場和電荷極化效應,能夠產生強大的交流電動流動和膠體及分子捕獲效應。此外,觀察到從尖端發出因交流電所致之噴流,此噴流與經典的Landau-Squire噴流明顯不同。該裝置還可以非常有效地捕獲奈米粒子量子點(QD),這促進了螢光共振能量轉移(FRET)分子檢測。
    在第三章中,本文提供了有關如何設計適當的電極設置,然後在去離子水中觀察不同交流電頻率下粒子及分子的流動和捕捉現象。首先使用微米級的膠體粒子,在高頻1MHz下,本文發現到尖端噴流,此噴流成因為尖端附近焦耳熱強導致局部的交流電熱流(ACET),在低頻1KHz下,本文觀察到因歐姆充電機制的交流電滲流所產生的漩渦,此漩渦可以將粒子掃至針尖,有助於尖端附近的正介電泳(p-DEP)捕捉,這種交流電滲流(ACEO)輔助正介電泳(p-DEP)捕捉的方法也可以用於奈米粒子QD上,可以將尖端周圍的QD捕捉到探針上,當本文試圖捕捉λDNA大分子時,發現在5KHz時觀察到明顯的噴流,這次的噴流並非是交流電熱(ACET)所引起,而是由尖端附近的法拉第充電機制的交流電滲流所造成,並且還伴隨著逆時針方向的歐姆充電機制的交流電滲流漩渦。
    在第四章中,因於第三章觀察到QD可被有效的捕捉,本文使用這些被捕獲的QD作為FRET供體,並在交流電場下對單鏈DNA(ssDNA)進行FRET。本文發現在電場開啟後可以立即檢測到明顯的FRET訊號。本文進一步使用λDNA作為骨幹,使其與QD結合。
    在第五章中,為了使第三章中觀察到的交流電熱噴流現象更加明顯,本文用高電導度的DNA緩衝溶液來代替低電導度的去離子水。本文發現噴流可以變得非常明顯,且於探針後端粒子會匯集於探針上,在尖端處粒子會從針尖遠離尖端。
    在第六章中,本文討論了交流電熱(ACET)和交流電滲流(ACEO)噴流現象背後的機制,並根據電壓、圓錐角、流體性質和頻率推導出相對應的尺度。這些特徵與經典的Landau-Squire噴流的特徵截然不同。
    鑑於交流電所生成的強大流動和捕獲現象,該裝置可用於快速且提升檢測訊號以及促進分子結合。因此,它可能具有加速晶片分子檢測的用途。

    In this thesis, We develop a new electrokinetic microfluidic device using a sharp conducting tip made of a tungsten conical needle. Utilizing strong electric field and charge polarization effects around the tip, this device is capable of generating intensified AC electrokinetic flows and colloidal/molecular trapping effects. In addition, for the first time, an AC jet emanating from the tip is observed, markedly different from the classical Landau-Squire jet. This device further allows me to trap quantum dot (QD) nanoparticles very efficiently, providing me an advantage of facilitating molecular detections using Fluorescence Resonance Energy Transfer (FRET).

    摘要 i 誌謝 ix 目錄 x 表目錄 xiv 圖目錄 xiv 符號說明 xxi 第一章 緒論 1 1.1研究背景 1 1.2文獻回顧 1 1.3研究動機 3 第二章 基本原理 7 2.1 交流電滲流(AC Electro-osmosis, ACEO) 7 2.2 介電泳(Dielectrophoresis, DEP) 8 2.3 電場誘導偶極吸引力(Field Induced Dipole Attraction, FIDA) 9 第三章 利用STM探針在交流電場作用下於低導電度溶液中微奈米粒子及分子聚集及流動現象 13 3.1 不同電極排列效應 13 3.1.1 實驗裝置組裝 13 3.1.2 工作溶液 15 3.1.3 實驗步驟 16 3.1.4 實驗相關細節 16 3.1.5 不同排列結果探討 17 3.2 微米粒子不同AC頻率下的現象結果 17 3.2.1 實驗裝置組裝 17 3.2.2 工作溶液 17 3.2.3 實驗步驟 17 3.2.4 實驗相關細節 18 3.2.5結果探討 19 3.3奈米量子點(Quantum Dot, QD)不同AC頻率下的現象結果 22 3.3.1實驗裝置組裝 23 3.3.2 工作溶液 23 3.3.3 實驗步驟 23 3.3.4 實驗相關細節 24 3.3.5 結果探討 25 3.4 λDNA不同AC頻率下的現象結果 27 3.4.1實驗裝置組裝 27 3.4.2 工作溶液 27 3.4.3實驗步驟 27 3.4.4實驗相關細節 28 3.4.5 結果探討 28 3.5 結論 31 第四章 利用STM探針在交流電場作用下集濃供受體來加快FRET反應及增強訊號 40 4.1 螢光共振能量轉移基本原理 40 4.2量子點之FRET檢測 41 4.2.1 實驗裝置組裝 42 4.2.2 工作溶液 42 4.2.3 實驗步驟 43 4.2.4 實驗相關細節 44 4.2.5 影像處理軟體(Image-Pro Plus)的影像擷取參數條件設定 45 4.2.6 結果探討 45 4.3 量子點修飾之λDNA的FRET檢測 47 4.3.1 實驗裝置組裝 47 4.3.2 工作溶液 47 4.3.3 實驗步驟 50 4.3.4 實驗相關細節 52 4.3.5 影像處理軟體(Image-Pro Plus)的影像擷取參數條件設定 52 4.3.6結果探討 53 4.4 結論 54 第五章 微奈米粒子於高導電度溶液中不尋常的交流電場作用 65 5.1微米粒子AC高頻下的現象結果 65 5.1.1 實驗裝置組裝 65 5.1.2 工作溶液 66 5.1.3 實驗步驟 66 5.1.4 實驗相關細節 67 5.1.5結果討論 67 5.2奈米量子點AC高頻下的現象結果 67 5.2.1實驗裝置組裝 68 5.2.2 工作溶液 68 5.2.3 實驗步驟 68 5.2.4 實驗相關細節 69 5.2.5 不同頻率結果 69 5.3奈米量子點於DNA的緩衝溶液中以偏壓環狀聚集 70 5.3.1實驗裝置組裝 70 5.3.3實驗步驟 70 5.3.4實驗相關細節 71 5.3.5 測試結果 71 5.4結果討論 72 第六章 針尖噴流現象和機理 80 6.1錐形電極的電場分佈 80 6.2 交流電熱效應(AC Electrothermal, ACET) 84 6.2.1 基本原理 84 6.2.2導電度和介電常數與流體間關係 85 6.2.3交流電熱速度(UACET)推導 86 6-3 法拉第充電機制的交流電滲流噴流 88 6-4 Landau-squire 噴流 89 6.4結論 93 第七章 結論及未來工作 100 參考文獻 102 附錄A STM探針製作 105 A.1 電化學蝕刻 105 A.2 裝置架設及操作步驟 106 A.2.1裝置架設 106 A.2.2 操作步驟 106 A.2.3 相關細節 107 附錄B PDMS裝置製作 110 B.1 光罩設計 110 B.2 光微影製程 110 B.2.1 基板清洗 110 B.2.2 光阻塗佈 111 B.2.3 軟烤 111 B.2.4 曝光 112 B.2.5 曝後烤 112 B.2.6 顯影 112 B.3 微流道模型製作 113 附錄C 影像拍攝與數據處理 116 C.1影像擷取參數設定 116 C.1.1曝光時間( Exposure Time ) 116 C.1.2觀測視窗大小( Binning ) 116 C.1.3影像整體視覺亮度( Visual gain ) 116 C.2 影像擷取時間設定 116 C.3 螢光濾片的選擇 117 C.4 螢光强度的静態與動態擷取 118 C.3.1 螢光強度的靜態擷取 118 C.3.2 螢光強度的動態擷取 118 C.5 FRET相關計算參數設定 119 C.5.1 QD螢光強度的擷取 119 C.5.2 FRET螢光強度擷取 119 C.5.3 FRET相關計算 121

    Becker, K., Lupton, J.M., Müller, J., Rogach, A.L., Talapin, D.V., Weller, H. & Feldmann, J. 2006 Electrical control of Förster energy transfer, Nature Material, 5, 777-781.
    Cheng, I.F., Han, H.W. & Chang, H.C. 2012 Dielectrophoresis and shear-enhanced sensitivity and selectivity of DNA hybridization for the rapid discrimination of Candida species, Biosensors and Bioelectronics, 33, 36-43.
    Du, J.R., Juang, Y.J., Wu, J.T. & Wei, H.H. 2008 Long-range and superfast trapping of DNA molecules in an AC electrokinetic funnel, Biomicrofluidics, 2, 044103.
    Green, N. G., Ramos, A., Gonzalez, A., Morgan, H., & Castellanos, A. 2002. Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. III. Observation of streamlines and numerical simulation. Physical review E, 66, 026305.
    Hermanson, K.D., Lumsdon, S.O., Williams, J.P., Kaler, E.W. & Velev, O.D. 2001 Dielectrophoretic Assembly of Electrically Functional Microwires from Nanoparticle Suspensions, Science, 294, 1082-1086.
    Hsieh, S.F., Chang, C.P., Juang, Y.J. & Wei, H.H. 2008 Stretching DNA with electric fields beneath submicron interfacial constriction created by a closely fitting microdroplet in a microchannel, Applied Physics Letters, 93, 084103.
    Jackson, J. D. (1998). Classical electrodynamics. U.S, Wiley.
    Ko, S. H., Lee, H., & Kang, K. H. 2008. Hydrodynamic flows in electrowetting. Langmuir, 24, 1094-1101
    Landau L. D., Lifshitz E. M. 1987, Fluid Mechanics: Volume 6 of Course of Theoretical Physics, 2nd. U.S, Butterworth Heinemann..
    Lastochkin, D., Zhou, R., Wang, P., Ben, Y., & Chang, H. C. (2004). Electrokinetic micropump and micromixer design based on ac faradaic polarization. Journal of Applied Physics, 96, 1730-1733.
    Lian, M., Islam, N., & Wu, J. (2007). AC electrothermal manipulation of conductive fluids and particles for lab-chip applications. Iet Nanobiotechnology, 1, 36-43.
    Lide, D. R. (Ed.). 1994. CRC handbook of chemistry and physics (Vol. 85). CRC press.
    Medintz, I. & Hildebrandt, N. 2014 FRET-Forster Resonance Energy Transfer, Germany: Wiley-VCH, Germany.
    Melcher, J. R. 1981. Continuum electromechanics (Vol. 2). Cambridge: MIT press.
    Morgan, H. & Green, N.G. 2003 AC Electrokinetic: Colloids and Nanoparticles. Baldock, UK: Research Studies.
    Nikiforov T.T. & Beechem J.M. 2006 Development of homogeneous binding assays based on fluorescence resonance enrgy transfer between quantum dots and Alexa Fluor fluorophores, Analytical Biochemistry, 357, 68-76.
    Pozrikidis, C. 1996. Introduction to theoretical and computational fluid dynamics. Oxford university press
    Srisa-Art, M., Dyson, E.C., deMello, A.J. & Edel, J.B. 2008 Monitoring of real-time streptavidin-biotin binding kinetics using droplet microfluidics, Analytical Chemistry, 80, 7063-7067.
    Stratton, J. A. 1941. Electromagnetic theory. McGraw-Hill, New York.
    Swami, N., Chou, C.F., Ramamurthy, V. & Chaurey, V. 2009 Enhancing DNA hybridization kinetics through constriction-based dielectrophoresis, Lab on a Chip, 9, 3212-20.
    Vannoy, C. H., Tavares, A. J., Noor, M. O., Uddayasankar U. & Krull, U. J. 2011 Biosensing with quantum dots: a microfluidic approach, Sensor, 11, 9732-63.
    Washizu, M. & Kurosawa, O. 1990 Electrostatic Manipulation of DNA in Microfabricated Structures, IEEE Transactions on Industry Applications, 26, 1165-1172.
    Wei, W., He, X. & Ma, N. 2014 DNA-templated assembly of a heterobivalent quantum dot nanoprobe for extra- and intracellular dual-targeting and imaging of live cancer cells, Angewandte Chemie International Edition, 53, 5573-5577.
    Zhang, C.Y., Yeh, H.C., Kuroki, M.T. & Wang, T.H. 2005 Single-quantum-dot-based DNA Nanosensor, Nature Material, 4, 826-831.
    Zhang, C. Y., & Johnson, L. W. 2007 Microfluidic control of fluorescence resonance energy transfer: breaking the FRET limit, Angewandte Chemie International Edition, 46, 3482-85.
    Zhou, R., Chang, H.C., Protasenko, V., Kuno, M., Singh, A.K., Jena, D. & Xing, H. 2007 CdSe nanowires with illumination-enhanced conductivity: Induced dipoles, dielectrophoretic assembly, and field-sensitive emission, Journal of Applied Physics, 101, 073704.
    連政偉,製備含量子點修飾之DNA分子梳並應用其發展具分子探測與檢測功能之一維FRET生物感測器。國立成功大學化工所碩士論文,2011。
    梁紫涵,整合DNA拉伸及交流電荷動力作用製備快速且高靈敏度的FRET分子感測器。國立成功大學化工所碩士論文,2017。
    趙慶安,在交流電場下實現定向組裝奈米粒子和DNA分子來增益FRET感測。國立成功大學化工所碩士論文,2018。

    下載圖示 校內:2024-08-07公開
    校外:2024-08-07公開
    QR CODE