簡易檢索 / 詳目顯示

研究生: 陳建佑
Chen, Jian-You
論文名稱: 氦原子2S-3P飽和吸收光譜
Saturated absorption spectroscopy of helium 2S-3P transition
指導教授: 崔祥辰
Chui, Hsiang-Chen
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 55
中文關鍵詞: 飽和吸收光譜
外文關鍵詞: saturation absorption spectrum
相關次數: 點閱:82下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於氦原子結構簡單、化學特性穩定,氦原子常常是討論原子分子多體運動的基本原子,其光譜線的精密量測結果,用於驗證理論計算、驗證數學近似法的準確度檢驗有著重大的幫助,另外,氦原子也是太空中常見的粒子,其光譜也廣泛的被應用在天文物理上。
      都普勒增寬問題是研究精密光譜量測重要一環,為了克服都普勒增寬,常見的光譜學方法為:雙光子光譜,飽和吸收光譜,電磁誘發透明光譜等...。本篇目的是利用飽和吸收光譜觀測氦原子2S-3P的精細結構。為此我們架設了一套完整個光學系統,包含:雷射光源部分、倍頻系統與溫控器、氦原子的放電系統、Fabry-Perot共振腔以及量測系統。
    利用以上的系統我們成功的觀察到氦原子2S-3P的各種譜線,包含: 督普勒吸收光譜、2S-3P的精細結構分裂譜線。其中,2S-3P的精細結構分裂譜線包含了 J=0、J=1、J=2三條譜線外,也觀察到了三條crossover的現象,共六條譜線。我們分析譜線的線寬,頻率距離以及對光譜進行fitting,皆得到與理論相近的結果,因此我們可以確定觀察到的譜線是氦原子2S-3P的精細結構。
    最後,我們也對吸收光譜與飽和吸收光譜的訊號強度對各種參數進行參數相依的實驗,這些參數包含:壓力、光強度、放電功率等等...。目的是為了確認各種參數的變化對光譜的訊號強度的影響,以便於日後最佳化訊號強度,提升訊噪比及優化系統時,能夠給予一定的參考標準。
    關鍵字:飽和吸收光譜。

    The structure of helium atoms is simple and stable, so that helium atoms are regarded as the fundamental particles in the field of many-body problems. Helium spectrum play an important role on theoretical examination and physical model checking. On the other hand, helium can be easily found in outer space, the spectrum of helium are widely used in the field of astrophysics.
    Doppler broadening is an important problem in the field of high precision measurement. There exists many kinds of methods to overcome this problem of Doppler broadening such as saturation absorption spectrum, two photon transition spectrum, and electromagnetically induced transparency spectrum, and so on... The research purpose of this thesis is to observe the Doppler-free spectrum of helium 2S-3P transitions. For this reason, we construct an optical system that include laser source, frequency doubling system, helium discharge system, Fabry-Perot cavity and saturated absorption spectroscopy.
    We observed both absorption and saturated absorption signals using our optical system. The saturated absorption signals we have observed were J=0、J=1 and J=2 dips and other three dip of crossover. We check the linewidth, frequency distance of these signal and fitting these signals to make sure that the dips we observed are the helium 2S-3P transitions.
    Some related parameters, pressure shift, light shift, and discharge power-dependent experiments, are also analyzed in this thesis. These parameter-dependent experiments can help us optimize signals, enhance S/N ratio.

    Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Background 1 1.2-1 History of Saturated absorption spectrum 1 1.2-2 Former experiments 2 1.3 Overview of the Thesis 4 Chapter 2 Theoretical overview 6 2.1 Helium atoms 6 2.1-1 Structure of Helium 6 2.1-2 Helium 2S-3P energy gap 7 2.2 Doppler free spectroscopy 9 2.2-1 Linewidth broadening 9 2.2-2 Saturated absorption spectroscopy 12 2.2-3 Saturation Intensity 15 2.3 PPLN waveguide 16 2.4 Laser scanning 17 2.4-1 Confocal Fabry-Perot Cavity 17 2.4-2 Free Spectral Range 17 2.4-3 Minimum Resolvable Bandwidth 18 2.4-4 Finesse 18 2.5 Discharge 19 Chapter 3 Experimental setting 20 3.1 Light source system 20 3.1-1 778 nm Laser source: 20 3.1-2 389 nm Laser source: 24 3.1-3 PPLN-WG setup 25 3.1-4 Fabry-Perot cavity 28 3.1-5 frequency scanning 30 3.2 Helium discharge system 31 3.3 Helium experimental layout 35 3.4 Detectors 37 Chapter 4 Experimental result and analysis 38 4.1 Helium absorption spectrum 38 4.2 Parameter dependent experiments of absorption spectrum 39 4.2-1 Pressure dependent helium absorption 39 4.2-2 Radius dependent helium absorption 40 4.2-3 Discharge frequency dependent helium absorption 41 4.3 Helium 2S-3P Saturated absorption spectrum 42 4.4 Parameter dependent experiments of Saturated absorption spectrum 46 4.4-1 Discharge power dependent 46 4.4-2 Pump power dependent 47 4.4-3 Pump power dependent linewidth analysis 48 Chapter 5 Conclusion and future works 50 5-1 Conclusion 50 5-2 Future works 52 References 53

    1. Cagnac, B., et al., Two-photon spectroscopy of optical frequencies in rubidium and hydrogen. Laser Physics, 1996. 6(2): p. 213-219.
    2. Rapol, U.D. and V. Natarajan, Doppler-free spectroscopy in driven three-level systems. European Physical Journal D, 2004. 28(3): p. 317-322.
    3. Javan, A., Possibility of Production of Negative Temperature in Gas Discharges. Physical Review Letters, 1959. 3(2): p. 87-89.
    4. Szoke, A. and A. Javan, Isotope Shift and Saturation Behavior of the 1.15-Mu Transition of Ne. Physical Review Letters, 1963. 10(12): p. 521-&.
    5. Hansch, T.W., M.D. Levenson, and A.L. Schawlow, Complete Hyperfine Structure of a Molecular Iodine Line. Physical Review Letters, 1971. 26(16): p. 946-&.
    6. Marin, F., et al., Precision-Measurement of the Isotope Shift of the 2 S-3(1)-3 P-3(0) Transition in Helium. Physical Review A, 1994. 49(3): p. R1523-R1526.
    7. Pavone, F.S., et al., 1st Pure Frequency-Measurement of an Optical-Transition in Helium - Lamb Shift of the 2(3)S(1) Metastable Level. Physical Review Letters, 1994. 73(1): p. 42-45.
    8. Morton, D.C., Q.X. Wu, and G.W.F. Drake, Energy levels for the stable isotopes of atomic helium (He-4 I and He-3 I). Canadian Journal of Physics, 2006. 84(2): p. 83-105.
    9. Foot, C.J., Atomic physics. Oxford master series in physics. 2005, Oxford ; New York: Oxford University Press. xiii, p.331
    10. Villanueva, A.J. and J.R. Granada, Compact extended model for Doppler broadening of neutron absorption resonances. Annals of Nuclear Energy, 2009. 36(6): p. 723-732.
    11. Volz, T.R.a.T. Doppler-Free Saturation Spectroscopy. Available from: http://www.mpq.mpg.de/cms/mpq/en/departments/quanten/homepage_cms/teaching/Praktikum/saturation_spectroscopy.pdf.
    12. Preston, D.W., Doppler-free saturated absorption: Laser spectroscopy. American Journal of Physics, 1996. 64(11): p. 1432-1436.
    13. Wiese, W.L. and J.R. Fuhr, Accurate Atomic Transition Probabilities for Hydrogen, Helium, and Lithium. Journal of Physical and Chemical Reference Data, 2009. 38(3): p. 565-726.
    14. Boyd, R.W., Nonlinear optics. 3rd ed. 2008, Amsterdam ; Boston: Academic Press. xix, p. 613
    15. Stegeman, G.I. and R.A. Stegeman, Nonlinear optics : phenomena, materials, and devices. Wiley series in pure and applied optics. 2012, Hoboken, N.J.: Wiley. xiii, p. 472
    16. Hooker, S. and C.E. Webb, Laser physics. Oxford master series in physics Atomic, optical, and laser physics. 2010, Oxford ; New York: Oxford University Press. xv, p.586
    17. Chen, C., Nonlinear optical borate crystals : principles and applications. 2012, Weinheim Germany: Wiley-VCH. xviii, p.387
    18. Dong, L., et al., Theoretical analysis of laser-locked spectroscopy employing a confocal Fabry-Perot cavity. Journal of the Korean Physical Society, 2006. 48(1): p. 56-60.
    19. Shin, C.H. and M. Ohtsu, Heterodyne Optical Phase-Locked Loop by Confocal Fabry-Perot Cavity Coupled Algaas Lasers. Ieee Photonics Technology Letters, 1990. 2(4): p. 297-300.
    20. Lee, S.-H. Confocal Fabry-Perot Cavity. 2001; Available from: http://laser.physics.sunysb.edu/~sellee/presentation2.pdf.
    21. Koglbauer, A., et al., A laser system for the excitation of rubidium Rydberg states using second harmonic generation in a PPLN waveguide crystal. Applied Physics B-Lasers and Optics, 2011. 104(3): p. 577-581.
    22. Brownian motion and its applications to mathematical analysis : ecole dete de probabilites de Saint-Flour XLIII - 2013. pages cm.
    23. W. Demtroder and Frank K. Tittel, ,Reviewer"Laser Spectroscopy: Basic Concepts and Instrumentation, Second Enlarged Edition“p451

    下載圖示 校內:2019-08-11公開
    校外:2019-08-11公開
    QR CODE