簡易檢索 / 詳目顯示

研究生: 林冠辰
Lin, Guan-Chen
論文名稱: 嵌入式快速檢測系統開發應用於人類絨毛膜促性腺激素之研究
Development of Embedded Rapid Test System for Human Chorionic Gonadotropin Strip
指導教授: 林裕城
Lin, Yu-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 94
中文關鍵詞: 呈色檢測快速響應矩陣碼人類絨毛膜促性腺激素影像處理嵌入式
外文關鍵詞: rapid test system, QR code, human chorionic gonadotropin, image processing, embedded
相關次數: 點閱:77下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究成功開發出具有高線性度、高靈敏度及高穩定度之嵌入式快速檢測系統,利用免疫反應的呈色結果作為檢測標的,使免疫呈色反應之偵測在定量分析上更加精確。本研究開發之嵌入式快速檢測系統包含硬體及軟體兩部分,在硬體方面設計出一台呈色判讀儀主體,裝載Advanced RISC Machine (ARM)開發板、Universal Serial Bus (USB)攝影機、LED光源、LCD點陣式液晶顯示器、LED燈號顯示、整合式電路板、極限開關及光學暗房,並製作出兩種可替換式載台分別放置檢測卡匣及快速響應矩陣碼。在軟體部分使用Python整合模組Zbar、OpenCV、NumPy及Matplotlib撰寫出影像處理程式。由實驗結果可以發現本研究所開發之嵌入式快速檢測系統在對人類絨毛膜促性腺激素檢測試劑量測下,可以在無人工調整情況,正確讀取Control、Test線(C、T線)位置,並建立出線性度極佳之濃度與灰階值校正曲線,作為量化分析的依據,該曲線決定係數可達0.98,在人類絨毛膜促性腺激素濃度極限偵測下,可量測最低濃度至6.25 mIU/mL,成功地突破傳統閾值25 mIU/ mL的判定,在重複實驗下仍可保持良好的精準度(相對標準差<10 %)。

    This thesis presents an embedded rapid test system with high sensitivity and stability for human chorionic gonadotropin. The inspection is based on immunochromatographic assay which is widely applied to human chorionic gonadotropin detection. In combination with the immunochromatographic strip, the embedded rapid test system is able to detect and calculate the concentration of the sample. The system is composed of hardware and software parts, and the layout of rapid reader was designed by SolidWorks and AutoCAD. The analyzing programs including a main program, QR code and image processing were compiled by MATLAB. After verification of each parts of the system, we found that the rapid test system successfully detect the minimum 6.25 mIU/mL of human chorionic gonadotropin reagent.

    摘要 I Extended Abstract II 誌謝 VI 目錄 VII 圖目錄 XII 表目錄 XVI 第一章 緒論 1 1-1 研究背景 1 1-2 免疫分析法 2 1-2-1 免疫分析基本理論 3 1-2-2 抗原與抗體定義 3 1-2-3 抗原與抗體結合力 5 1-2-4 免疫分析檢測種類 6 1-2-5 免疫分析偵測方法 7 1-3 免疫反應試紙 10 1-4 人類絨毛膜促性腺激素簡介 12 1-5文獻回顧 13 1-5-1人類絨毛膜促性腺激素之檢測 13 1-5-2影像判讀簡介 15 1-5-3影像判讀之發展 17 1-6 研究動機與目的 21 1-7章節架構 22 第二章 嵌入式快速檢測系統之系統設計與製作 24 2-1 嵌入式快速檢測系統之系統流程 24 2-1-1 資訊匯入:QR code 27 2-1-2 影像處理之流程 28 2-1-3 讀取C、T線之演算法:半波峰 32 2-2 呈色判讀儀設計 34 2-2-1 呈色判讀儀外殼設計 34 2-2-2 整合式電路板設計 35 2-2-3 呈色判讀儀結構設計 36 2-3 呈色判讀儀製作 38 2-3-1 整合式電路板 38 2-3-2 呈色判讀儀 39 2-4 程式開發環境建立 40 2-4-1 開發板選用:ARM_Raspberry pi 40 2-4-2 作業系統選用:Raspbian 42 2-4-3 程式語言選用:Python 44 第三章 實驗與研究方法 46 3-1 實驗儀器 46 3-1-1 呈色判讀儀硬體架構 46 3-1-2 感光元件 47 3-1-3 LED光源 47 3-1-4 極限開關 48 3-2 實驗藥品 49 3-3 設備及軟體測試 50 3-3-1 QR code測試 51 3-3-1-1 QR code產出與測試 51 3-3-1-2 QR code形變測試 52 3-3-2 極限開關測試 52 3-3-3 C、T線判讀測試 53 3-3-3-1 C、T線讀值位置測試 53 3-3-3-2 C、T線讀值範圍測試 54 3-3-3-3 灰階線性度測試 54 3-3-3-4 色階線性度測試 56 3-3-3-5 色階靈敏度測試 57 3-3-3-6 色階偵測極限 58 3-4 嵌入式快速檢測系統整合測試 58 3-4-1市售hCG試紙測試 58 3-4-2 C、T線之正確判讀位置驗證 59 3-4-3 導入擬合曲線之濃度測試 59 第四章 結果與討論 60 4-1 嵌入式快速檢測系統之實現 60 4-2 QR code測試結果 62 4-2-1 產出QR code及測試結果 62 4-2-2 QR code形變測試結果 63 4-3 極限開關測試結果 64 4-4 C、T線判讀測試結果 65 4-4-1 C、T線讀值位置測試結果 65 4-4-2 C、T線讀值範圍測試結果 68 4-4-3 灰階線性度測試結果 71 4-4-4 色階線性度測試結果 74 4-4-5 色階靈敏度測試結果 76 4-4-6 色階偵測極限 79 4-5 嵌入式快速檢測系統整合測試結果 80 4-5-1 hCG試紙測試結果 80 4-5-2 C、T線之正確判讀位置驗證結果 84 4-5-3 導入擬合曲線之濃度測試結果 85 第五章 結論與建議 88 5-1 結論 88 5-2 建議 90 參考文獻 91

    [1] R. Bellisario, R. B. Carlsen and O. P. Bahl, “Human Chorionic Gonadotropin Linear Amino Acid Sequence of The α Subunit,” Journal of Biological Chemistry, 248, pp.6796-6809, 1973.
    [2] R. B. Carlsen, O. P. Bahl and N. Swawinathan, “Human Chorionic Gonadotropin Linear Amino Acid Sequence of The β Subunit,” Journal of Biological Chemistry, 248, pp.6810-6827, 1973.
    [3] R. H. Garrett and C. M. Grisham, Biochemistry, Saunders College Publishing, 1995.
    [4] 廖國棠,金奈米粒子標記物在免疫分析、DNA 序列分析及微管道晶片系統分析上的應用,國立中山大學化學研究所博士論文,民國九十四年。
    [5] E. Engvall and P. Perlmann, “Enzyme-linked immunosorbent assay, Elisa. 3. Quantitation of specific antibodies by enzyme-labeled anti-immunoglobulin in antigen-coated tubes,” Journal of Immunology, 109, pp. 129-135, 1972.
    [6] T. Watanabe, Y. Ohkuno, H. Matsuoka, H. Kimura, Y. Sakai, Y. Ohkaru, T. Tanaka, and Y. Kitaura, “Development of a simple whole blood panel test for detection of human heart –type fatty acid-binding protein,” Clinical Biochemistry, 34, pp. 257-263, 2001.
    [7] M. Hedenfalk, P. Adlercreutz, and B. Mattiasson, “Modulation of the measuring range of a radioimmunoassay using an organic water two phase system,” Analytica Chimica Acta, 341, pp. 269-274, 1997.
    [8] F. Hardy, L. Djavadi-Ohaniance and M. E. Goldberg, “Measurement of antibody/antigen association rate constants in solution by a method based on the enzyme-linked immunosorbent assay,” Journal of immunological methods, 200, pp. 155-159, 1997.
    [9] P. Onnerfjord, S. Eremin, J. Emneus and G. Marko-Varga, “Fluorescence polarisation for immunoreagent characterization,” Journal of immunological methods, 213, pp. 31-39, 1998.
    [10] J. A. Schmid and A. Billich, “Simple method for high sensitivity chemiluminescence ELISA using conventional laboratory equipment,” BioTechniques, 22, pp. 278, 1997.
    [11] C. A. Janeway, P. Travers, M. Walport, and M. J. Shlomchik, Immunobiology, 5th edition, Garland Science, 2001.
    [12] A. J. Lapthorn, D. C. Harris, A. Littlejohn, J. W. Lustbader, R. E. Canfield, K. J. Machin, F. J. Morgan and N. W. Isaacs, “Crystal structure of human chorionic gonadotropin,” Nature, 369, pp.455-461, 1994.
    [13] J. G. Pierce and T. F. Parsons, “Glycoprotein Hormones: Structure and Function,” Annual Reviews Biochemistry, 50, pp.465-495, 1981.
    [14] S. Birken, Y. Maydelman, M. A. Gawinowicz, A. Pound, Y. Liu and A. S. Hartree, “Isolation and characterization of human pituitary chorionic gonadotropin,” Endocrinology, 137, pp.1402-1411, 1996.
    [15] http://en.wikipedia.org/wiki/Human_chorionic_gonadotropin.
    [16] 徐敘瑢, 陳憲偉, 光電材料與顯示技術, 五南文化事業出版, 2007.
    [17] R. W. McNaught and J. T. France, “Studies of the biochemical basis of steroid sulphatase deficiency: Preliminary evidence suggesting a defect in membrane-enzyme structure,” Journal of Steroid Biochemistry, 13, pp. 363-373, 1980.
    [18] G. Harrison, P. Haffey and E. E. Golub, “A nanogram-level colloidal gold single reagent quantitative protein assay,” Analytical Biochemistry, 380, pp.1-4, 2008.
    [19] W. N. Zhang and Z. Y. Zhao, “Three-color Data Reproduction Algorithm and Implementation for the Color Image Based on CCD and DSPs,” Computer Engineering, 28, pp.111-113, 2002.
    [20] R. Z. Zhou, J. He and Z. L. Hong, “Adaptive Algorithm of Auto White Balance for Digital camera,” Journal of Computer Aided Design & Computer Graphics, 17, pp.529-533, 2005.
    [21] D. Z. Zheng, Z. L. Wu and S. Wang, “Detecting Method of Quantitative Colloidal Gold Test Strip Concentration Based on the DSP Image Processing,” Proc. IEEE 4th International iCBBE Conference (IEEE iCBBE 2010), pp.1-4, 2010.
    [22] H. Y. Jiang and M. Du, “Research on the Detection of Gold Immunochromatographic Assay by the Image Histogram Feature Vectors and Fuzzy C-means,” Proc. IEEE 8th International FSKD Conference (IEEE FSKD 2011), pp.467-471, 2011.

    下載圖示 校內:2020-06-18公開
    校外:2020-06-18公開
    QR CODE