簡易檢索 / 詳目顯示

研究生: 倪仲達
Ni, Chung-Ta
論文名稱: 以化學法製備鋰鈷氧化物薄膜及其在薄膜鋰離子二次電池之研究
Deposition and Characterization of LiCoO2 Thin Film by Wet Chemical Method for Li-ion Thin Film Battery
指導教授: 方冠榮
Fung, Kuan-Zong
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 67
中文關鍵詞: 陰極鋰鈷氧化物薄膜鋰離子電池
外文關鍵詞: Cathode, Lithium Cobalt Oxide, Thin Film, Li-ion Battery
相關次數: 點閱:92下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 濕氏化學法由於具有成本低、簡單的製作流程和容易控制化學計量比與顯微結構的優點,因此被廣泛用於製造薄膜與研究。然而,薄膜的品質高度依賴於前驅物溶液的性質。在本研究中,幾丁聚醣用作前驅物溶液的螯合劑,因Li/ Co離子能與幾丁聚醣產生螯合作用,使前驅物溶液可以均勻分散。利用此前驅物溶液可以有效的沉積鋰鈷氧化物薄膜。由循環伏安與充放電的測試,以此溶膠凝膠的前驅物溶液所製備的鋰鈷氧化物薄膜可具有初次放電電容量達129mAh/g。 以同樣的方式亦可於可撓曲的不銹鋼基材上沉積LiCoO2陰極。經500°C的熱處理,X光繞射結果顯示,LiCoO2前驅物可獲得層狀結構,然而當退火溫度高於600°C時,不銹鋼基材將會被氧化,並進一步與LiCoO2反應。此外,循環伏安與充放電的測試顯示該製程條件下的LiCoO2具有電化學的特性,於600℃退火熱處理的LiCoO2薄膜的電化學性能在不同溫度下得到的薄膜相比,具有更好的循環特性。具有奈米板形狀的LiCoO2可以就由水熱法的方式獲得。經水熱法的製程可獲得六方晶的LiCoO2與立方晶的Co3O4兩相薄膜,其兩相形成主導因素為pH值的控制。另外,循環伏安與充放電的測試顯示,以此方法所製備的LiCoO2薄膜亦具有被用作鋰離子電池陰極材料的電化學可逆性與性質。

    Wet chemical method is one of the methods which were widely used to fabricate thin films, due to low cost, simple processing and easy to control the composition stoichiometry and desired microstructure. However, the quality of the deposited thin films was highly dependent on the nature of precursor solution. In this study, the addition of chitosan in the precursor solution was found to be an effective method for the deposition of LiCoO2 thin films. Due to the chemical bonding between chitosan and cations, Li/Co ions can be homogeneously distributed in the precursor solution at a molecular scale. Such a precursor solution is beneficial for the deposition of a single-phase LiCoO2 film on a Pt-coated silicon substrate. The CV and charge–discharge test also showed that the prepared thin film cathode deposited from the chitosan-added precursor solution exhibited initial discharge capacity of 129 mAh g−1. Thus, the lithium/ cobalt acetates-containing precursor solution with chitosan addition is a unique and appropriate way to prepare a dense and single-phase LiCoO2 film. By the same process, the LiCoO2 cathode can be deposited on a flexible stainless steel. After annealing at ca. 500°C, the results of XRD showed that the LiCoO2 gel was crystallized in a layered structure. When the annealing temperatures were kept at 700°C, the stainless steel substrate was oxidized and reacted with LiCoO2. The structure of LiCoO2 was no longer observed. The SEM observation indicated that the average grain size of films increased with increasing temperature. The thickness of spin-coated films is ca. 1–3 μm. Also, the CV measurement showed that the LiCoO2 film exhibited a good electrochemical reversibility to be used as cathode material. Compared to the electrochemical properties of the films obtained at various temperatures, the 600°C-annealed LiCoO2 film exhibits a better cycle retention than 500°C-annealed LiCoO2 film. Nanosheet LiCoO2 can be obtained by hydrothermal process at a low temperature. After hydrothermal process, the XRD results indicate that the LiCoO2 and Co3O4 phase formed and crystallized in hexagonal and cubic structure respectively and the pH value was the key factor that dominates the phase purity and crystal shape. Also, the CV measurement and charge-discharge test showed that the LiCoO2 film exhibited electrochemical reversibility to be used as cathode material for Li-ion battery.

    中文摘要 I 英文摘要 II 致謝 IV 總目錄 V 表目錄 VII 圖目錄 VIII 重要名詞英漢對照及符號說明 X 第一章 緒論 1 1-1 能源產業之現況及發展趨勢 1 1-2 鋰離子電池之發展沿革與薄膜電池 1 1-3 軟性電子的發展與可撓曲電池的需求 6 1-4 研究動機與目的 10 第二章 理論基礎與文獻回顧 11 2-1 鋰離子二次電池之工作原理 11 2-2 鋰離子二次電池之陰極材料 13 2-3 化學法製備氧化物原理 19 第三章 實驗步驟與方法 20 3-1 實驗流程 20 3-2 原料選擇 23 3-3 鍍膜結構分析 23 3-4 電池組裝 24 3-5 電化學性質測試 27 第四章 以溶膠凝膠法製備鋰鈷氧化物薄膜 28 4-1-1 含醋酸鋰/醋酸鈷溶液之穩定性 28 4-1-2 醋酸鋰/醋酸鈷沉積膜之熱分解 29 4-1-3 幾丁聚醣於與金屬離子(Li, Co)間的螯合作用 29 4-1-4 以溶膠凝膠法製備LiCoO2薄膜之晶體結構與顯微結構分析 30 4-1-5 以溶膠凝膠法製備LiCoO2薄膜之電化學性質分析 31 4-2以溶膠凝膠法製備LiCoO2薄膜於可撓曲不銹鋼基材 39 4-2-1 熱處理溫度對LiCoO2薄膜沉積於不銹鋼基材之影響 39 4-2-2 熱處理溫度對LiCoO2薄膜沉積於不銹鋼基材之電化學行為 44 第五章 以水熱法合成鋰鈷氧化物薄膜 50 5-1 pH值變化對LiCoO2 相合成之影響 51 5-2 pH值變化對LiCoO2 微結構之影響 52 5-3 以水熱法合成之LiCoO2 薄膜之電化學特性 57 第六章 總結論 60 參考文獻 62

    1. J.-M. Tarascon and M. A. Armand, “Issues and challenges facing rechargeable lithium batteries”, Nature, 414, p.359 (2001)
    2. J. Hajek, French Patent, 8, 10 (1949)
    3. M. S. Whittingham, “Electrochemical energy storage and intercalation chemistry”, Science, 192, p.1226 (1976).
    4. M. S. Whittingham, Chalcogenide battery, US Patent 4009052
    5 . “Battery Recall Update”, Adv. Batt. Technol., 25, p.4 (1989)
    6. R. Kanno, Y. Takeda, T. Ichikawa, K. Nakanishi and O. Yamamoto, “Carbon as negative Electrodes in Lithium Secondary Cells”, J. Power Sources, 26, p.535 (1989)
    7. J. O. Besenhard, M. Hess and P. Komeda, “Dimensionally stable Li-alloy electrodes for secondary batteries”, Solid State Ionics, 40-41, p.525 (1990)
    8. M. Lazzari and B. Scrosati, “A Cyclable Lithium Organic Electrolyte Cell Based on Two Intercalation Electrodes”, J. Electrochem. Soc., 127, p.733 (1980)
    9. T. Nagaura, and K. Tozawa, “Lithium ion rechargeable battery”, Prog. Batteries Solar Cells, 9, p.209 (1990)
    10. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J.-M. Tarascon, “Nano-sized transition metal oxides as negative electrode material for lithium-ion batteries”, Nature, 407, p. 496 (2000)
    11. C. L. Liao, Y. H. Lee, S. T. Chang and K. Z. Fung, “Structural Characterization and Electrochemical Properties of RF-Sputtered Nanocrystalline Co3O4 Thin-Film Anode”, J. Power Sources, in press
    12. Y. H. Lee, I. C. Leu, S. T. Chang, C. L. Liao, K. Z. Fung, “The electrochemical capacities and cycle retention of electrochemically deposited Cu2O thin film toward lithium”, Electrochimica Acta, 50, p.551 (2004)
    13. Y. H. Lee, I. C. Leu, C. L. Liao, S. T. Chang, M. T. Wu, J. H. Yen, and K. Z. Fung, “Fabrication and Characterization of Cu2O Nanorod Arrays and Their Electrochemical Performance in Li-Ion Batteries”, Electrochemical and Solid-State Letters, 9, p.A207 (2006)
    14. E. Zhecheva, R. Stoyanova, G. Tyuliev, K. Tenchev, M. Mladenov, S. Vassilev, “Surface interaction of LiNi0.8Co0.2O2 cathodes with MgO”, Solid State Sciences, 5, p.711 (2003)
    15. H. Zhao, L. Gao, W. Qiu, X. Zhang, “Improvement of electrochemical stability of LiCoO2 cathode by a nano-crystalline coating”, Journal of Power S ources, 132, p.195, (2004)
    16. H. Liu, Z. Zhang, Z. Gong, Y. Yang, “A comparative study of LiNi0.8Co0.2O2 cathode materials modifiedby lattice-doping and surface-coating”, Solid State Ionics, 166, p.317 (2004)
    17. L. J. Fu, H. Liu, C. Li, Y. P. Wu, E. Rahm, R. Holze, H. Q. Wu, “Surface modifications of electrode materials for lithium ion batteries”, Solid State Sciences, 8, p.113 (2006)
    18. K. Kanehori, K. Matsumoto, K. Miyauchi; T. Kudo, “Thin film solid electrolyte and its application to secondary lithium cell”, Solid State Ionics, 9-10, p 1445 (1983)
    19. J. B. Bates, D. R. Gruzalski, C. F. Luck, “ Rechargeable solid state lithium microbatteries”, IEEE Micro Electro Mechanical Systems, 7-10, p.82 (1993)
    20. R. B. Goldner, S. Slaven, T. Y. Liu, T. E. Haas, F. O. Arntz, P. Zerigian, “Properties of a carbon negative electrode in completely inorganic thin film Li-ion batteries with a LiCoO2 positive electrode”, Materials Research Society Symposium-Proceedings, v.369, Solid State Ionics IV, p.137 (1995)
    21. J. B. Bates and N. J. Dudney , “Thin Film Rechargeable Lithium Batteries for Implantable Devices” , American Society for Artificial Internal Organs Inc., 43 , p.M644 (1997)
    22. 盧俊安、林鴻欽、邱國展, “從Orgainc Electronic Conference 2007 觀察軟性電子未來之發展趨勢”, 工業材料, 252, p.80 (2007)
    23. http://www.materialsnet.com.tw/DocView.aspx?id=7325
    24. 林美雲譯, “使用LiMn2O4系正極材料的鋰離子二次電池”, 工業材料, 145, p.116 (1999)
    25. 洪逸明, “鋰離子二次電池陰極材料LiMn2O4±δ之合成及其電化學性質”, 國立成功大學材料科學及工程研究所博士論文, p.16-24 (2001)
    26. K. Mizushima, P. C. Jones, P. J. Wiseman and J. B. Goodenough, “LixCoO2 (0  x  1): a new cathode material for batteries of high energy density”, Solid State Ionics, 3/4, p 171 (1980)
    27. R. J. Gummow, M. M. Thackery, W. I. F. David and S. Won, “LixCoO2 (0  x  1): a new cathode material for batteries of high energy density”, Mat. Res. Bull., 15, p.783 (1980)
    28. E. Rossen, J.N. Reimers, and J.R. Dahn, “Synthesis and electrochemistry of spinel LT-LiCoO2”, Solid State Ionics, 62, p.53 (1993)
    29. B. Garcia, J. Farcy, J. P. Pereira-Ramos, J. Perichon, N. Baffier, “Low-temperature cobalt oxide as rechargeable cathodic material for lithium batteries”, J. Power Sources, 54, p.373 (1995)
    30. T. Ohzuku, H. Konori, K. Sawai, and T. Hirai, “Natural graphite as an anode for rechargeable nonaqueous cells”, Chem. Express, 5, p.733 (1990)
    31. R. J. Gummow, M. M. Thackeray, W. I. F. David and S. Hull, “Structure and electrochemistry of lithium cobalt oxide synthesized at 400℃” Mat. Res. Bull., 27, p.327 (1992)
    32. M. Yoshio, Y. Todorov, K. Yamato, H. Noguchi, J. I. Itoh, M. Okada and T. Mouri, “Preparation of LiyNi1-xMnxO2 as a cathode for lithium-ion battery”, J. Power Sources, 74, p.46 (1998)
    33. C. Delmas, Mater. Sci. Eng., B3, p.97 (1980)
    34. L. P. L. M. Rabou and A. Roskam, “Cycle-life improvement of Li/LiCoO2 batteries”, J. Power Sources 54, p.316 (1995)
    35. H. Stephen, T. Stephen, Solubilities of Inorganic and Organic
    Compounds, Pergamon Press, New York, 1963.
    36. A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, J. Electrochem. Soc., 144(4), p.1188 (1997).
    37. A. K. Paclhi, K. S. Nanjunclaswamy, C. Masquelier, S. Okada, and J. B. Goodenough, J. Electrochem.Soc., 144(5), p.1609 (1997).
    38. A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier, and J. B. Goodenough, J. Electrocheni. Soc., 144(8), p.2581 (1997).
    39. E.-H. M. Diefallah, “ Kinetic analysis of Thermal Decomposition
    Reactions. Part VI. Thermal Decomposition of Manganese(II) Acetate
    Tetrahydrate", Thermochimica Acta 202 p.1 (1992).
    40. M.A. Mohamed, S.A. Halawy,“Kinetic and Mechanistic Study of the
    Non-Isothermal Decomposition of Manganese(II) acetate tetrahydrate",
    Thermochimica Acta 242 p.173 (1994).
    41. G.E. Tobon-Zapata, E.G. Ferrer, S.B. Etcheverry, E.J. Baran,“Thermal
    Behaviour of Pharmacologically Active Lithium Compounds", Journal
    of Thermal Analysis and Calorimetry 61 p.29 (2000).
    42. F. Yao, W. Chen, H. Wang, H. Liu, K. Yao, P. Sun, H. Lin,“A Study on Cytocompatible Poly(chitosan-g-l-lactic acid) " , Polymer 44 p.6435 (2003).
    43. C. Zhang, Q. Ping, H. Zhang, J. Shen,“Synthesis and Characterization
    of Water-Soluble O-Succinyl-Chitosan", European Polymer Journal 39,
    p.1629 (2003).
    42. S.J. Kim, S.R. Shin, Y.M. Lee, S.I. Kim,“Swelling Characterizations of
    Chitosan and Polyacrylonitrile Semi-Interpenetrating Polymer Network
    Hydrogels", Journal of Applied Polymer Science 87, p.2011 (2003).
    44. J. N. Reimers, J. R. Dalin, “Electrochemical and In Situ X-ray diffraction studies of lithium intercalation in LiCoO2”, J. Electrochem. Soc., 139, p.2091 (1992)
    45. M.S. Yazici, D. Krassowski, J. Prakash, “Flexible graphite as battery anode and current collector”, Journal of Power Sources, 141, 171–176(2005)
    46. Ki Tae Nam, Dong-Wan Kim, Pil J. Yoo, Chung-Yi Chiang, Nonglak Meethong, Paula T. Hammond, Yet-Ming Chiang, Angela M. Belcher“Virus-Enabled Synthesis and Assembly of Nanowires for Lithium Ion Battery Electrodes”, SCIENCE, 312, p.12 (2006)
    47. Shu Saeki, Jaeryeong Lee, Qiwu Zhang, Fumio Saito“Co-grinding LiCoO2 with PVC and water leaching of metal chlorides formed in ground product”, International Journal of Mineral Processing, 74, p.373-378 (2002)

    無法下載圖示 校內:2023-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE