| 研究生: |
丘堂君 Chiu, Tang-chun |
|---|---|
| 論文名稱: |
以Sr、N改質TiO2光觸媒在可見光下處理1,2-二氯乙烷之研究 Photocatalytic Degradation of 1,2-dichloroethane Under Visible Light with Sr- or N-doped TiO2 Photocatalysts |
| 指導教授: |
朱信
Chu, Hsin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 177 |
| 中文關鍵詞: | 光觸媒 、1.2-二氯乙烷 、可見光光催化 、Sr改質光觸媒 、N改質光觸媒 |
| 外文關鍵詞: | 1.2-Dichloroethane, Titanium dioxide (TiO2), Visible light photocatalysis, Sr-doped catalyst, N-doped catalyst |
| 相關次數: | 點閱:115 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1,2-二氯乙烷(1,2-dichloroethane, DCE)為工業上常用的有機溶劑,但如果在使用過程中排放到環境中,將對人體造成危害。光催化反應具有氧化速率快、處理效率高及操作程序簡單等優點,因此為目前較新穎降解有機溶劑的技術。
本實驗利用以溶膠凝膠法製備而成TiO2光觸媒,並以Sr或N進行改質,期望藉由改質來提高TiO2光觸媒在可見光(λ>400nm)下降解1,2-二氯乙烷的效率。同時探討在批次實驗中之操作參數,包括進流濃度(39~80 ppm)、燈源種類、相對濕度(0~20%)及氧氣濃度(0~21%)對光觸媒降解1,2-二氯乙烷速率的影響,並藉由各種輔助實驗,如UV-Visible、XRD、SEM、TEM等精密儀器來研究光觸媒吸光度、粒徑分佈、表面特性等物化性質,藉以探討與1,2-二氯乙烷降解效率之關連性。
研究結果顯示,經由Sr或N改質TiO2光觸媒(Sr/TiO2、N/TiO2)能使吸收波長往可見光波長位移且光觸媒能隙(band gap)都有顯著下降;在XRD分析結果得知當鍛燒溫度達600°C時有部分anatase轉變成為rutile,當鍛燒溫度為700°C則TiO2光觸媒晶相會全部轉變成為rutile。
以TiO2、Sr/TiO2、N/TiO2光觸媒降解1,2-二氯乙烷之光催化實驗發現,TiO2光觸媒在藍光及日光的平均降解速率分別為0.99 μg/min及0.83 μg/min,除了Sr/Ti = 5%光觸媒外,其餘不同比例之Sr/TiO2、N/TiO2光觸媒皆能有效提高降解速率,其中又以N/Ti = 15%光觸媒不論是在藍光或日光下都有最佳表現,分別為1.95 μg/min及1.35 μg/min,而Sr/Ti = 5%光觸媒在藍光及日光的降解速率僅有0.93 μg/min及0.64 μg/min,顯示過量Sr的添加會阻礙anatase晶相的成長,反不利其光催化活性。
在選定最佳降解效果之N/Ti = 15%光觸媒進行操作參數實驗中發現,進流濃度對於光觸媒降解1,2-二氯乙烷的速率有顯著影響,當進流濃度過高時,會降低光觸媒的降解速率;此外,隨著氧氣濃度的提升,光觸媒降解1,2-二氯乙烷的速率也隨之上升,而水氣的存在則對光觸媒降解1,2-二氯乙烷速率有顯著之抑制作用。
1,2-Dichloroethane, a widely used as one of organic solvents in the industry, can damage the human when it released. Photocatalytic reaction is one of novel technologies to degrade organic solvents due to its fast oxidation rate, high decompose rate, and simple procedures, hence used to degrade 1,2-Dichloroethane in the present study.
TiO2 in this research is made by sol-gel method, and its doping as Sr or N (Sr/TiO2 or N/TiO2) is expected to apply it to visible light and increase its 1,2-dichloroethane decomposed rate. Decomposed rate of 1,2-dichloroethane with photocatalysts as function of 1,2-dichloroethane concentration, light source, relative humidity and oxygen concentration were investigated in a batch study. Additionally, the physical and chemical properties of the photocatalyst such as absorption spectra, particle size and surface morphology, measured by UV-Visible, XRD, SEM and TEM et cetera, were used to relate its 1,2-dichloroethane decomposed rate.
The UV-visible spectra analysis indicates that the absorption wavelength of Sr/TiO2 or N/TiO2 is closer to the visble light than TiO2, resulting from its narrower band gap. The XRD pattern of TiO2 which is calcined at temperatures below 500°C shows the crystal form of anatase, coexistence of the antanse and rutile at 600°C, while almost all rutile at 700°C.
Decomposed rate of 1,2-dichloroethane with TiO2 under blue or fluorescent light are 0.99 μg/min and 0.83 μg/min respectively. Regarding Sr/TiO2 or N/TiO2, the performance is much improved in almost all cases. For example, N/TiO2 with N/Ti = 15% has the best decomposed rate of 1,2-dichloroethane under blue or fluorescent light, 1.95 μg/min and 1.35 μg/min, respectively. However, the performance of Sr/TiO2 with Sr/Ti = 5%, decomposed rate of 1,2-dichloroethane, is lower than TiO2 and indicates Sr/Ti = 5% is excessive, hence inhibits photocatalytic activity.
Regarding operating parameters, the results show that 1,2-dichloroethane concentration and light source are of important on the decomposed rate of 1,2-dichloroethane with photocatalysts; In addition, the decomposed rate of 1,2-dichloroethane increases as the concentration of oxygen increases and is lower at higher relative humidities.
1.Alberici, R.M. and Jardim, W.E., Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide. Applied Catalysis B-Environmental, 1997, 14(1-2), 55-68.
2.Al-Salim, N.I., Bagshaw, S.A., Bittar, A., Kemmitt, T., McQuillan, A.J., Mills, A.M., and Ryan, M.J., Characterisation and activity of sol-gel-prepared TiO2 photocatalysts modified with Ca, Sr or Ba ion additives. Journal of Materials Chemistry, 2000, 10(10), 2358-2363.
3.Amores, J.M.G., Escribano, V.S., DAturi, M., and Busca, G., Preparation, characterization and surface structure of coprecipitated high-area SrxTiO2+x(0 x 1) powders. Journal of Materials Chemistry, 1996, 6(5), 879-886.
4.Anpo, M., Shima, T., Kodama, S., and Kubokawa, Y., Photocatalytic Hydrogenation of Ch3cch with H2O on Small-Particle TiO2 - Size Quantization Effects and Reaction Intermediates. Journal of Physical Chemistry, 1987, 91(16), 4305-4310.
5.Aranzabal, A., Gonzalez-Marcos, J.A., Ayastuy, J.L., and Gonzalez-Velasco, J.R., Kinetics of Pd/alumina catalysed 1,2-dichloroethane gas-phase oxidation. Chemical Engineering Science, 2006, 61(11), 3564-3576.
6.Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., and Taga, Y., Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293(5528), 269-271.
7.Bae, E. and Choi, W., Highly enhanced photoreductive degradation of perchlorinated compounds on dye-sensitized metal/TiO2 under visible light. Environmental Science & Technology, 2003, 37(1), 147-152.
8. Bandara, J., Mielczarski, J.A., Lopez, A., and Kiwi, J., 2. Sensitized degradation of chlorophenols on iron oxides induced by visible light - Comparison with titanium oxide. Applied Catalysis B-Environmental, 2001, 34(4), 321-333.
9. Brillas, E., Mur, E., Sauleda, R., Sanchez, L., Peral, J., Domenech, X., and Casado, J., Aniline mineralization by AOP's: anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes. Applied Catalysis B-Environmental, 1998, 16(1), 31-42.
10. Cho, Y.M., Choi, W.Y., Lee, C.H., Hyeon, T., and Lee, H.I., Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2. Environmental Science & Technology, 2001, 35(5), 966-970.
11. Choi, W.Y., Termin, A., and Hoffmann, M.R., The Role of Metal-Ion Dopants in Quantum-Sized TiO2 - Correlation between Photoreactivity and Charge-Carrier Recombination Dynamics. Journal of Physical Chemistry, 1994, 98(51), 13669-13679.
12. Devi, L.G. and Murthy, B.N., Structural characterization of Th-doped TiO2 photocatalyst and its extension of response to solar light for photocatalytic oxidation of oryzalin pesticide: a comparative study. Central European Journal of Chemistry, 2009, 7(1), 118-129.
13. Di Valentin, C., Pacchioni, G., Selloni, A., Livraghi, S., and Giamello, E., Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations. Journal of Physical Chemistry B, 2005, 109(23), 11414-11419.
14. Harizanov, O., Ivanova, T., and Harizanova, A., Study of sol-gel TiO2 and TiO2-MnO obtained from a peptized solution. Materials Letters, 2001, 49(3-4), 165-171.
15. He, C., Yu, Y., Zhou, C.H., and Hu, X.F., Structure and photocatalytic activities of Ag/TiO2 thin films. Journal of Inorganic Materials, 2002, 17(5), 1025-1033.
16. Hoffmann, M.R., Martin, S.T., Choi, W.Y., and Bahnemann, D.W., Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews, 1995, 95(1), 69-96.
17. Hung, C.H. and Marinas, B.J., Role of water in the photocatalytic degradation of trichloroethylene vapor on TiO2 films. Environmental Science & Technology, 1997, 31(5), 1440-1445.
18. Hung, C.H. and Marinas, B.J., Role of chlorine and oxygen in the photocatalytic degradation of trichloroethylene vapor on TiO2 films. Environmental Science & Technology, 1997, 31(2), 562-568.
19. Jagadale, T.C., Takale, S.P., Sonawane, R.S., Joshi, H.M., Patil, S.I., Kale, B.B., and Ogale, S.B., N-doped TiO2 nanoparticle based visible light photocatalyst by modified peroxide sol-gel method. Journal of Physical Chemistry C, 2008, 112(37), 14595-14602.
20. Jardim, W.F., Aiberic, R.M., Takiyama, M.K., and Huang, C.P., Gas phase Photocatalytic Destruction of Trichloroethylene Using UV/TiO2. The 26th Mid-Atlantic Industrial and Hazardous Waste Conference, Delaware, USA, 1994.
21. Jho, J.H., Kim, D.H., Kim, S.J., and Lee, K.S., Synthesis and photocatalytic property of a mixture of anatase and rutile TiO2 doped with Fe by mechanical alloying process. Journal of Alloys and Compounds, 2008, 459(1-2), 386-389.
22. Jo, W.K. and Kim, J.T., Application of visible-light photocatalysis with nitrogen-doped or unmodified titanium dioxide for control of indoor-level volatile organic compounds. Journal of Hazardous Materials, 2009, 164(1), 360-366.
23. Joshi, M.M., Labhsetwar, N.K., Mangrulkar, P.A., Tijare, S.N., Kamble, S.P., and Rayalu, S.S., Visible light induced photoreduction of methyl orange by N-doped mesoporous titania. Applied Catalysis a-General, 2009, 357(1), 26-33.
24. Kanai, N., Nuida, T., Ueta, K., Hashimoto, K., Watanabe, T., and Ohsaki, H., Photocatalytic efficiency of TiO2/SnO2 thin film stacks prepared by DC magnetron sputtering. Vacuum, 2004, 74(3-4), 723-727.
25. Lam, S.W., Chiang, K., Lim, T.M., Amal, R., and Low, G.K.C., Effect of charge trapping species of cupric ions on the photocatalytic oxidation of resorcinol. Applied Catalysis B-Environmental, 2005, 55(2), 123-132.
26. Li, D., Haneda, H., Hishita, S., and Ohashi, N., Visible-light-driven nitrogen-doped TiO2 photocatalysts: effect of nitrogen precursors on their photocatalysis for decomposition of gas-phase organic pollutants. Materials Science and Engineering B-Solid State Materials for Advanced Technology, 2005, 117(1), 67-75.
27. Liu, S.X., Chen, X.Y., and Chen, X., Preparation of N-doped visible-light response nanosize TiO2 photocatalyst using the acid-catalyzed hydrolysis method. Chinese Journal of Catalysis, 2006, 27(8), 697-702.
28. Liu, S.X., Qu, Z.P., Han, X.W., and Sun, C.L., A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide. Catalysis Today, 2004, 93-95, 877-884.
29. Machkova, M., Brashkova, N., Ivanov, P., Carda, J.B., and Kozhukharov, V., Surface behavior of Sr-doped lanthanide perovskites. Applied Surface Science, 1997, 119(1-2), 127-136.
30. Muggli, D.S., McCue, J.T., and Falconer, J.L., Mechanism of the photocatalytic oxidation of ethanol on TiO2. Journal of Catalysis, 1998, 173(2), 470-483.
31. Obee, T.N. and Brown, R.T., TiO2 Photocatalysis for Indoor Air Applications - Effects of Humidity and Trace Contaminant Levels on the Oxidation Rates of Formaldehyde, Toluene, and 1,3-Butadiene. Environmental Science & Technology, 1995, 29(5), 1223-1231.
32. Ollis, D.F., Hsiao, C.Y., Budiman, L., and Lee, C.L., Heterogeneous Photoassisted Catalysis - Conversions of Perchloroethylene, Dichloroethane, Chloroacetic Acids, and Chlorobenzenes. Journal of Catalysis, 1984, 88(1), 89-96.
33. Park, M., Komarneni, S., and Roy, R., Microwave-hydrothermal decomposition of chlorinated organic compounds. Materials Letters, 2000, 43(5-6), 259-263.
34. Ramanthan, K. and Spivey, J.J., Catalytic-Oxidation of 1,1-Dichloroethane. Combustion Science and Technology, 1989, 63(4-6), 247-255.
35. Reddy, K.M., Reddy, C.V.G., and Manorama, S.V., Preparation, characterization, and spectral studies on nanocrystalline anatase TiO2. Journal of Solid State Chemistry, 2001, 158(2), 180-186.
36. Sathish, M., Viswanathan, B., and Viswanath, R.P., Characterization and photocatalytic activity of N-doped TiO2 prepared by thermal decomposition of Ti-melamine complex. Applied Catalysis B-Environmental, 2007, 74(3-4), 307-312.
37. Sato, S., Photocatalytic Activity of NOx-Doped TiO2 in the Visible-Light Region. Chemical Physics Letters, 1986, 123(1-2), 126-128.
38. Sato, S., Nakamura, R., and Abe, S., Visible-light sensitization of TiO2 photocatalysts by wet-method N doping. Applied Catalysis a-General, 2005, 284(1-2), 131-137.
39. Serpone, N., Maruthamuthu, P., Pichat, P., Pelizzetti, E., and Hidaka, H., Exploiting the Interparticle Electron-Transfer Process in the Photocatalyzed Oxidation of Phenol, 2-Chlorophenol and Pentachlorophenol - Chemical Evidence for Electron and Hole Transfer between Coupled Semiconductors. Journal of Photochemistry and Photobiology a-Chemistry, 1995, 85(3), 247-255.
40. Sivakumar, S., Pillai, P.K., Mukundan, P., and Warrier, K.G.K., Sol-gel synthesis of nanosized anatase from titanyl sulfate. Materials Letters, 2002, 57(2), 330-335.
41. Sonawane, R.S., Hegde, S.G., and Dongare, M.K., Preparation of titanium(IV) oxide thin film photocatalyst by sol-gel dip coating. Materials Chemistry and Physics, 2003, 77(3), 744-750.
42. Sreethawong, T., Laehsalee, S., and Chavadej, S., Comparative investigation of mesoporous- and non-mesoporous-assembled TiO2 nanocrystals for photocatalytic H2 production over N-doped TiO2 under visible light irradiation. International Journal of Hydrogen Energy, 2008, 33(21), 5947-5957.
43. Sun, H.Q., Bai, Y., Liu, H.J., Jin, W.Q., and Xu, N.P., Photocatalytic decomposition of 4-chlorophenol over an efficient N-doped TiO2 under sunlight irradiation. Journal of Photochemistry and Photobiology a-Chemistry, 2009, 201(1), 15-22.
44. Tsoukleris, D.S., Maggos, T., Vassilakos, C., and Falaras, P., Photocatalytic degradation of volatile organics on TiO2 embedded glass spherules. Catalysis Today, 2007, 129(1-2), 96-101.
45. Umebayashi, T., Yamaki, T., Itoh, H., and Asai, K., Band gap narrowing of titanium dioxide by sulfur doping. Applied Physics Letters, 2002, 81(3), 454-456.
46. Wang, Y.Q., Yu, X.J., and Sun, D.Z., Synthesis, characterization, and photocatalytic activity of TiO2-xNx nanocatalyst. Journal of Hazardous Materials, 2007, 144(1-2), 328-333.
47. Wang, Y.Y., Zhou, G.W., Li, T.D., Qiao, W.T., and Li, Y.J., Catalytic activity of mesoporous TiO2-xNx photocatalysts for the decomposition of methyl orange under solar simulated light. Catalysis Communications, 2009, 10(4), 412-415.
48. Wong, M.S., Chou, H.P., and Yang, T.S., Reactively sputtered N-doped titanium oxide films as visible-light photocatalyst. Thin Solid Films, 2006, 494(1-2), 244-249.
49. Xie, Y.B., Yuan, C.W., and Li, X.Z., Photocatalytic degradation of X-3B dye by visible light using lanthanide ion modified titanium dioxide hydrosol system. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2005, 252(1), 87-94.
50. Yates, J.R., Eng, J., Mccormack, A.L., Moji, T., and Pious, D., Studies of Immunological Pathways by Using Tandem Mass-Spectrometry and Database Searching. Abstracts of Papers of the American Chemical Society, 1995, 209, 122-ANYL.
51. Yin, S., Yamaki, H., Komatsu, M., Zhang, Q.W., Wang, J.S., Tang, Q., Saito, F., and Sato, T., Preparation of nitrogen-doped titania with high visible light induced photocatalytic activity by mechanochemical reaction of titania and hexamethylenetetramine. Journal of Materials Chemistry, 2003, 13(12), 2996-3001.
52. Youjun, L., Keyu, S., Yuying, Z., Shangjin, H., Xianzhi, G., Zongjie, D., Hongjian, C., Cheng, Z., and Baolong, Z., The characterization of Sr-doped nanocrystal grain microspheres and photodegradation of KN-R dye. Catalysis Communications, 2008, 9(5), 557-562.
53. Zhang, M.L., An, T.C., Fu, J.M., Sheng, G.Y., Wang, X.M., Hu, X.H., and Ding, X.J., Photocatalytic degradation of mixed gaseous carbonyl compounds at low level on adsorptive TiO2/SiO2 photocatalyst using a fluidized bed reactor. Chemosphere, 2006, 64(3), 423-431.
54. 化工資訊,「化學品原料商情」,四月,2003,92-96。
55. 高濂、鄭珊、張青紅,「奈米光觸媒」,五南圖書出版股份有限公司,2004。
56. 陳慧英、黃定加、朱秦億,「溶膠凝膠法在薄膜製備上的應用」,化工技術,第七卷,第十一期,1999,152-167。
57. 陳禹鈞,「以Fe、V改質光觸媒處理1,2-二氯乙烷之研究」,國立成功大學環境工程學系碩士論文,五月,2005。
58. 黃振家,「揮發性有機廢氣處理技術:活性碳吸附」,化工技術,第四十四卷,第三期,1997,49-59。
59. 劉國棟,「VOC管制趨勢展望」,工業污染防制,第四十八期,1992,15-31。
60. 劉暢、暴寧鐘、楊祝紅、陸小華,化學催報,第二十二期,2001,215-218。
61. 蔡文田,「含氯溶劑可行減廢技術介紹」,工業污染防治,第三期,1993,171-182。
62. 蔡文田,張慶源,「揮發性有機物(VOCs)催化燃燒處理」,環境工程會刊,第四期,1992,41-58。
63. 盧滄海、賴龍山,「廢溶劑回收可行性探討」,工業污染防制,第二十九期,1989,102-117。
64. 環保署毒災應變中心,「物質安全資料表:1,2-二氯乙烷」,2007。
65. 環境保護署,「有害空氣污染物排放管制規範研訂計畫」,EPA-82-F103-09-13,1994。
66. 垰田博史,「光觸媒圖解」,商周出版社,2003。