| 研究生: |
楊晞 Yang, Hsi |
|---|---|
| 論文名稱: |
尋找並分析有助於致病性細菌感染的可傳送性質體 Identification and characterization of mobilizable plasmids that benefit bacterial pathogens during infections |
| 指導教授: |
鄧景浩
Teng, Ching-Hao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 水平基因轉移 、可傳播質體 、細菌素K |
| 外文關鍵詞: | Horizontal gene transfer, transmissible plasmids, colicin K |
| 相關次數: | 點閱:73 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
水平基因轉移是可以在不同物種間傳遞基因的一種方式,可以傳播抗藥基因、毒力基因以及適應性因子,在細菌的演化上扮演了重要的角色。接合作用被認為是最為重要的一種水平基因轉移的機制。細菌的接合作用可以傳播可接合質體及可傳送質體。如果這些可以透過接合作用傳播的質體又帶有有助於致病細菌感染的適應性因子,則會對於公共衛生造成很大的威脅。
基於上述原因,在本篇研究中透過篩選來自大腸桿菌及克雷白氏桿菌的臨床菌株來探討研究帶有有助於細菌感染適應性因子的可傳播質體。我們透過接合的方式分別將8株及10株帶有Ampicillin抗性的大腸桿菌以及克雷白氏桿菌中的可傳播質體送到共生型大腸桿菌MG1655 strR中。接著,我們將所拿到的接合子和MG1655 strR菌株混和後,同時打到老鼠體內透過皮下感染及泌尿道感染的方式來篩選接合子中所帶有的可傳播質體是否有助於細菌的感染。我們發現其中一個接合子MG1655 strR/EC23在泌尿道感染中所回收的菌數有上升的現象。透過Kado-Liu的方式進行分析發現其接合子透過接合的方式得到4個質體。進一步發現,其中一個質體pEC23-3似乎提供接合的能力而另一個質體pEC23-4則會提供競爭的優勢。將pEC23-4定序後,發現其帶細菌素K及mobilizable基因蔟。在本篇研究中,發現了細菌素K在感染過程中的新作用,其基因蔟在泌尿道感染、全身性感染以及腸道感染的過程中會提供競爭的優勢,而mobilizable的基因蔟則會幫助質體在接合時的移動。此外,我們也發現細菌素K會使質體pEC23-4在腸道內穩定而質體pEC23-4卻會阻礙MG1655 strR在腸道中的生長。
Horizontal gene transfer (HGT) is a way to allow gene transfer between different bacterial species. Through this process the antibiotic resistance genes, virulence factors and other adaptive traits can be spread among bacteria. Thus, HGT plays an important role in bacterial evolution. Conjugation is one of the most important mechanisms of HGT. Bacterial conjugation results in the transfer of conjugative plasmids and mobilizable plasmids. Transmissible plasmids harboring genes that benefit bacteria during infections would be a serious threat to public health.
Accordingly, this study is to identify and characterize novel transmissible plasmids that harboring adaptive traits benefiting bacteria during infections. We screened for plasmids that derived from Klebsiella pneumonia and Escherichia coli clinical isolates. These plasmids were transferred to the commensal E. coli strain MG1655 strR through conjugation. We obtained 8 trans-conjugants that have acquired plasmids from the E. coli clinical isolates, and 10 trans-conjugants that have acquired K. pneumoniae-derived plasmids. Then the trans-conjugants and MG1655 strR were mixed, the mixtures were subjected to the mouse air pouch and urinary tract infection (UTI) models to assess whether the acquired plasmids can benefit invading bacteria during infection. One trans-conjugant MG1655 strR/ EC23 showed significantly increased bacterial counts in the mouse UTI. Based on the Kado and Liu method, we found that the trans-conjugant MG1655 strR/ EC23 obtained more than one plasmid through the conjugation. Among the plasmids, pEC23-3 was identified to be involved in providing conjugation ability, while pEC23-4 was shown to be able to confer competitive advantage. pEC23-4 was sequenced and shown to contain the colicin K gene cluster and the mobilizable gene cluster. This study revealed a novel role of colicin K during infection. The colicin K gene cluster conferred E. coli competitive advantage during the course of UTIs, systemic infections, and intestinal colonization. The mobilizable gene cluster was responsible for mobilizing the plasmid. Furthermore, in the intestine, colicin K facilitated the maintenance of pEC23-4 in E. coli, but the presence of the plasmid hinders the growth of host bacteria.
1. Guarner, F. and J.-R. Malagelada, Gut flora in health and disease. The Lancet, 2003. 361(9356): p. 512-519.
2. Nordmann, P., T. Naas, and L. Poirel, Global spread of carbapenemase-producing Enterobacteriaceae. Emerging infectious diseases, 2011. 17(10): p. 1791.
3. Brenner, D.J. and J. Farmer, Enterobacteriaceae. Bergey's Manual of Systematics of Archaea and Bacteria, 1984.
4. Kuhnert, P., J. Nicolet, and J. Frey, Rapid and accurate identification of Escherichia coli K-12 strains. Applied and environmental microbiology, 1995. 61(11): p. 4135-4139.
5. Dobrindt, U., et al., Analysis of genome plasticity in pathogenic and commensal Escherichia coli isolates by use of DNA arrays. Journal of bacteriology, 2003. 185(6): p. 1831-1840.
6. Schmidt, H. and M. Hensel, Pathogenicity Islands in Bacterial Pathogenesis. Clinical Microbiology Reviews, 2004. 17(1): p. 14-56.
7. Kaper, J.B., J.P. Nataro, and H.L.T. Mobley, Pathogenic Escherichia coli. Nat Rev Micro, 2004. 2(2): p. 123-140.
8. Neuner, E.A., et al., Treatment and outcomes in carbapenem-resistant Klebsiella pneumoniae bloodstream infections. Diagnostic microbiology and infectious disease, 2011. 69(4): p. 357-362.
9. Munoz-Price, L.S., et al., Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. The Lancet infectious diseases, 2013. 13(9): p. 785-796.
10. Lai, Y.-C., H.-L. Peng, and H.-Y. Chang, RmpA2, an activator of capsule biosynthesis in Klebsiella pneumoniae CG43, regulates K2 cps gene expression at the transcriptional level. Journal of bacteriology, 2003. 185(3): p. 788-800.
11. Watanabe, T., Infective heredity of multiple drug resistance in bacteria. Bacteriological Reviews, 1963. 27(1): p. 87.
12. Heuer, H. and K. Smalla, Horizontal gene transfer between bacteria. Environmental biosafety research, 2007. 6(1-2): p. 3-13.
13. Frost, L.S., et al., Mobile genetic elements: the agents of open source evolution. Nature Reviews Microbiology, 2005. 3(9): p. 722-732.
14. Koonin, E.V. and Y.I. Wolf, Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic acids research, 2008. 36(21): p. 6688-6719.
15. Goldenfeld, N. and C. Woese, Biology's next revolution. Nature, 2007. 445(7126): p. 369-369.
16. Juhas, M., et al., Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS microbiology reviews, 2009. 33(2): p. 376-393.
17. Juhas, M., Horizontal gene transfer in human pathogens. Critical reviews in microbiology, 2015. 41(1): p. 101-108.
18. Pérez-Mendoza, D. and F. de la Cruz, Escherichia coli genes affecting recipient ability in plasmid conjugation: are there any? BMC genomics, 2009. 10(1): p. 71.
19. Mørtvedt, C.I. and I.F. Nes, Plasmid-associated bacteriocin production by a Lactobacillus sake strain. Microbiology, 1990. 136(8): p. 1601-1607.
20. Francia, M.V., et al., A classification scheme for mobilization regions of bacterial plasmids. FEMS microbiology reviews, 2004. 28(1): p. 79-100.
21. Kaiser, G. and E. Suchman, Transfer of Conjugative Plasmids and Mobilizable Plasmids in Gram-Negative Bacteria. 2013.
22. Prozorov, A., Horizontal gene transfer in bacteria: laboratory simulation, natural populations, genomic data. Mikrobiologiia, 1998. 68(5): p. 632-646.
23. Nedialkova, L.P., et al., Inflammation fuels colicin Ib-dependent competition of Salmonella serovar Typhimurium and E. coli in enterobacterial blooms. PLoS Pathog, 2014. 10(1): p. e1003844.
24. Šmarda, J. and D. Šmajs, Colicins—exocellular lethal proteins ofEscherichia coli. Folia microbiologica, 1998. 43(6): p. 563-582.
25. DeWitt, W. and D.R. Helinski, Characterization of colicinogenic factor E1 from a non-induced and a mitomycin C-induced Proteus strain. Journal of Molecular Biology, 1965. 13(3): p. 692-703.
26. Hardy, K., et al., Two major groups of colicin factors: their evolutionary significance. Molecular and General Genetics MGG, 1973. 125(3): p. 217-230.
27. Reeves, P., The Bacteriocins. Bacteriological Reviews, 1965. 29(1): p. 24-45.
28. Cascales, E., et al., Colicin Biology. Microbiology and Molecular Biology Reviews, 2007. 71(1): p. 158-229.
29. Ikari, N.S., D.M. Kenton, and V.M. Young, Interaction in the germfree mouse intestine of colicinogenic and colicin-sensitive microorganisms. Proceedings of the Society for Experimental Biology and Medicine, 1969. 130(4): p. 1280-1284.
30. Kelstrup, J. and R. Gibbons, Inactivation of bacteriocins in the intestinal canal and oral cavity. Journal of bacteriology, 1969. 99(3): p. 888.
31. Riley, M.A. and D.M. Gordon, The ecological role of bacteriocins in bacterial competition. Trends in microbiology, 1999. 7(3): p. 129-133.
32. Rijavec, M., et al., Prevalence of ColE1-Like Plasmids and Colicin K Production among Uropathogenic Escherichia coli Strains and Quantification of Inhibitory Activity of Colicin K. Applied and Environmental Microbiology, 2007. 73(3): p. 1029-1032.
33. Ye, J. and B. Van den Berg, Crystal structure of the bacterial nucleoside transporter Tsx. The EMBO journal, 2004. 23(16): p. 3187-3195.
34. Nieweg, A. and E. Bremer, The nucleoside-specific Tsx channel from the outer membrane of Salmonella typhimurium, Klebsiella pneumoniae and Enterobacter aerogenes: functional characterization and DNA sequence analysis of the tsx genes. Microbiology, 1997. 143(2): p. 603-615.
35. Kuhar, I. and D. Žgur-Bertok, Transcription Regulation of the Colicin K cka Gene Reveals Induction of Colicin Synthesis by Differential Responses to Environmental Signals. Journal of Bacteriology, 1999. 181(23): p. 7373-7380.
36. Raz, Y. and E. Tannenbaum, The influence of horizontal gene transfer on the mean fitness of unicellular populations in static environments. Genetics, 2010. 185(1): p. 327-337.
37. Kado, C., amp, and S. Liu, Rapid procedure for detection and isolation of large and small plasmids. Journal of bacteriology, 1981. 145(3): p. 1365-1373.
38. Chu, C., et al., Large drug resistance virulence plasmids of clinical isolates of Salmonella enterica serovar Choleraesuis. Antimicrobial agents and chemotherapy, 2001. 45(8): p. 2299-2303.
39. Datsenko, K.A. and B.L. Wanner, One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences, 2000. 97(12): p. 6640-6645.
40. Chalaris, A., et al., Apoptosis is a natural stimulus of IL6R shedding and contributes to the proinflammatory trans-signaling function of neutrophils. Blood, 2007. 110(6): p. 1748-1755.
41. Chiappini, N., et al., Streptococcus pyogenes SpyCEP influences host-pathogen interactions during infection in a murine air pouch model. PLoS One, 2012. 7(7): p. e40411.
42. Vandooren, J., et al., Intradermal air pouch leukocytosis as an in vivo test for nanoparticles. International Journal of Nanomedicine, 2013. 8: p. 4745-4756.
43. Monk, I.R., et al., Development of multiple strain competitive index assays for Listeria monocytogenes using pIMC; a new site-specific integrative vector. BMC Microbiology, 2008. 8(1): p. 96.
44. Leatham-Jensen, M.P., et al., The streptomycin-treated mouse intestine selects Escherichia coli envZ missense mutants that interact with dense and diverse intestinal microbiota. Infection and immunity, 2012. 80(5): p. 1716-1727.
45. Miajlovic, H. and S.G. Smith, Bacterial self-defence: how Escherichia coli evades serum killing. FEMS microbiology letters, 2014. 354(1): p. 1-9.
46. Campelo, A.B., et al., A bacteriocin gene cluster able to enhance plasmid maintenance in Lactococcus lactis. Microbial cell factories, 2014. 13(1): p. 77.
47. Inglis, R.F., et al., The role of bacteriocins as selfish genetic elements. Biology letters, 2013. 9(3): p. 20121173.
48. Lauffenburger, D.A., Bacteriocin production as a method of maintaining plasmid-bearing cells in continuous culture. Trends in Biotechnology, 1987. 5(4): p. 87-89.
49. Cornforth, D.M. and K.R. Foster, Competition sensing: the social side of bacterial stress responses. Nature Reviews Microbiology, 2013. 11(4): p. 285-293.
50. Butala, M., et al., Double locking of an Escherichia coli promoter by two repressors prevents premature colicin expression and cell lysis. Molecular microbiology, 2012. 86(1): p. 129-139.
51. Hol, F.J., et al., Nutrient-responsive regulation determines biodiversity in a colicin-mediated bacterial community. BMC biology, 2014. 12(1): p. 68.
52. Alteri, C.J., S.N. Smith, and H.L.T. Mobley, Fitness of Escherichia coli during Urinary Tract Infection Requires Gluconeogenesis and the TCA Cycle. PLoS Pathogens, 2009. 5(5): p. e1000448.
53. Chang, D.-E., et al., Carbon nutrition of Escherichia coli in the mouse intestine. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(19): p. 7427-7432.
54. Andersson, D.I. and D. Hughes, Microbiological effects of sublethal levels of antibiotics. Nature reviews. Microbiology, 2014. 12(7): p. 465.
55. Schumann, S., et al., Dextran Sodium Sulfate-Induced Inflammation Alters the Expression of Proteins by Intestinal Escherichia coli Strains in a Gnotobiotic Mouse Model. Applied and Environmental Microbiology, 2012. 78(5): p. 1513-1522.
56. Feldgarden, M. and M.A. Riley, High levels of colicin resistance in Escherichia coli. Evolution, 1998. 52(5): p. 1270-1276.
57. Riley, M.A. and D.M. Gordon, A survey of Col plasmids in natural isolates of Escherichia coli and an investigation into the stability of Col-plasmid lineages. Microbiology, 1992. 138(7): p. 1345-1352.
58. Gillor, O., I. Giladi, and M.A. Riley, Persistence of colicinogenic Escherichia coli in the mouse gastrointestinal tract. BMC microbiology, 2009. 9(1): p. 165.
59. Yang, S.-C., et al., Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Frontiers in microbiology, 2014. 5.
60. Callaway, T., et al., Colicin concentrations inhibit growth of Escherichia coli O157: H7 in vitro. Journal of food protection, 2004. 67(11): p. 2603-2607.
61. Kotłowski, R., Use of Escherichia coli Nissle 1917 producing recombinant colicins for treatment of IBD patients. Medical hypotheses, 2016. 93: p. 8-10.