| 研究生: |
勞萬 Ascarovich, Assylbekov-Rauan |
|---|---|
| 論文名稱: |
高分子/金屬界面結構於高分子發光二極體元件效能影響 Polymer/metal junction interface on the performance of polymer light-emitting diodes |
| 指導教授: |
郭宗枋
Guo, Tzung-Fang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 72 |
| 外文關鍵詞: | PLED, ETL, PEI |
| 相關次數: | 點閱:49 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此論文我們在發光層與鋁金屬間加入不同絕緣層材料,探討不同電子注
入層對polymer light-emitting diode元件之影響。使用的電子注入層差異
為碳元素多寡,包含C-O、C-C-C-O、C-C-C-C-O和C-C-N。在先前我們的研究
團隊發現以PEO搭配Al之陰極結構製備之有機高分子發光元件其元件整體表現
皆優於傳統被普遍使用之Ca/Al陰極結構所製備之有機高分子發光元件,其原
因為PEO與Al介面間原子的reaction造成,此reaction提供一個較低的位障給
電子注入,元件表現因而提升;而PEO為由碳元素所組成之材料,因此我們希
望藉由使用類似PEO之電子注入材料於高分子有機發光元件,探討是否會有相
同於PEO應用於有機高分子發光元件之元件表現提升之功效。
由實驗結果我們發現當使用poly(propylene glycol) 和
polyethyleneimine 為電子注入層時,和以Ca/Al 陰極結構製備之有機發光元
件相比其效率有兩倍的提升,藉由XPS 及UPS 量測探討效率提升之原因為兩
者界面產生之C-Al 鍵結降低電子注入位障造成。
We report the effect of polymer-insulating layer on electron injection in the
polymer light-emitting diodes (PLEDs). Several different polymer layers with
varying number of carbon groups (C-O), (C-C-C-O), (C-C-C-C-O) and (C-C-N)
were placed between the emitting layer and the aluminum cathode, and their
influence on the device performance was investigated. T.F Guo et.al reported that
XPS and UPS measurements for PEO showed that polymer/Al junction consist the
strong C-Al bond, which wasn’t observe in case of single Al cathode. PLEDs with
our alternative materials have shown comparable characteristics with PEO/Al, also
a chemical structure of PEO and testing polymers have a little deviation. Thus, we
can observe similar chemical interactions between Al cathode and our alternative
electron injection materials. Attractiveness of those materials is easy deposition, no
synthesis and cheapness.
When a ~4.5 nm-thick poly(propylene glycol) and polyethyleneimine layers
was employed, the device gave ~ two orders of magnitude higher external quantum
efficiency than that of the one without an insulating layer. This enhancement may
result from the significant decreasing of the effective barrier height for electron
injection to the emitting layer, due to C-Al bond formation on the polymer/metal
junction, which stimulated carrier injection from cathode. This effect improves the
balancing of charge injection into the PLED without using a low work function
cathode.
1) M. Pope, J. Chem. Phys.38, 2043 (1963).
2) R.H. Partridge, Polymer 24, 755 (1983).
3) C.W. Tang and S.A. Vanslyke, Appl. Phys. Lett. 51, 913 (1987).
4) J. Burroughes, D. Bradley, A. Brown, R. Marks, K. Mackay, R. Friend, P.
Burn, A. Holmes, Nature 347, 539 (1990).
5) D.D.C. Bradley, A. R. Brown, P. L. Burn, R. H. Friend, A. B. Holmes, A.
Kraft, Solid State Science 107, Springer, Heidelberg, 304 (1992).
6) A. R. Brown, D.D.C. Bradley, J. H. Burroughes, R. H. Friend, N. C.
Greenham, P. L. Burn, A. B. Holmes, and A. Kraft, Appl. Phys. Lett. 61,
2793 (1992).
7) W. R. Salaneck, S. Stafstrom, J. L. Bredas, Conjugated polymer surfaces and
interfaces, Cambridge Univ. Press (1996).
8) N. Johansson, F. Cacialli, K. Z. Xing, G. Beamson, D. T. Clark, R. H.
Friend, W. R. Salaneck, Synth. Met. 92, 207 (1998).
9) R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks,
C. Taliani, D. C. C. Bradley, D. A. Dos Santos, J. L. Br´edas, M. Logdlund,
W. R. Salaneck, Nature 397, 121 (1999).
10) I. H. Campbell, T. W. Hagler, and D. L. Smith, J. P. Ferraris, Phys. Rev.
Lett. 76, 1900 (1996).
11) P. W. M. Blom, M. J. M. de Jong, J. J. M. Vleggaar, Appl. Phys. Lett. 68,
3308 (1996).
12) G. G. Malliaras, J. C. Scott, J. Appl. Phys. 85, 7426 (1999).
13) I. H. Campbell, P. S. Davids, D. L. Smith, N. N. Barashkov, J. P. Ferraris,
Appl. Phys. Lett. 72, 1863 (1998).
14) P. W. M. Blom, M. C. J. M. Vissenberg, Mat. Sc. and Engineering 27, 53
(2000).
15) S. A. Jenekhe, J. A. Osaheni, Science 265, 765 (1994).
16) F. Rahman, N. P. Johnson, and T. Slight, “Electrical conduction in lightemitting
organic polymer Schottky diodes”, J. Appl. Phys. 98, 124504 (2005).
17) Lakowicz J. R. Principles of Fluorescence Spectroscopy, New York: Kluwer
Academic (New York: Kluwer/Plenum) p 698 (1999).
18) Sun Woong Kim, Byong Hoon Hwang, Joo Hyeon Lee, Jae Ik Kang, Kyoung
Wook Min, Woo Young Kim, Current Appiled Physics 2, 335, (2002).
19) F. Li, H. Tang, J. Shinar, and S. Z. Weisz, Appl. Phys. Lett.70, 2741 (1997).
20) C. C. Wu, C. I .Wu, J. C. Strum, and A. Lahn, Appl. Phys. Lett. 70, 1348
(1997).
21) I. M. Chan, W. C Cheng, and F. C. Hong, Appl. Phys. Lett. 80, 13 (2002).
22) S. K. So, W. K. Choi, C. H. Cheng, L. M. Leung, and C. F. Kwomg, Appl.
Phys. A: Mater. Sci. Prosecc. A68, 447 (1999).
23) S. F. J. Appleiard and M. P. Willis, Opt. Mater.9, 120 (1998).
24) T. Ishida, H. Kobayashi, Y. Nakato, J. Appl. Phys.73, 4344 (1993).
25) T.P. Nguyen, P. Le Rendu, N.N. Dinh, M. Fourmigue, Synthetic Metals 138,
229 (2003).
26) J. C. Carter, I. Grizzi, S. K. Heeks, D. J. Lacey, S. G. Latham, P. G. May, O.
R. Delospanos, K. Pichler, C. R. Towns, and H. F. Wittmann, Appl. Phys.
Lett.71, 34 (1997).
27) J. S. Kim, R. H. Friend, and F. Cacialli, Appl. Phys. Lett. 74, 3084 (1999).
28) H. Nakada and T. Toma, Inorganic and Organic Electroluminescence/EL 96,
Berlin, p.385, Wissenschaft and Technik Verlag, Berlin (1996).
29) E. Han, l. Bo, Y. Niidome, and M. Fujihira, Cjen. Lett, P. 969 (1994).
30) B. Liu, Y.H. Niu, W.L. Yu, Y. Cao, W. Huang, Synth. Met. 129, 129, (2002).
31) Q. Pei, A. Yang, J. Am. Chem. Soc. 188, 7416 (1996).
32) N.S. Cho, D.H. Hwang, J.I. Lee, B.J. Jung, H.K. Shim, Macromolecules, 35,
1224 (2002).
33) J.I. Lee, V.Y. Lee, R.D. Miller, ETRI J. 24, 409 (2002).
34) Nguyen, T.P., Molinie, P., Destruel, P., Handbook of advanced electronic and
photonic materials and devices vol 10. Organic and polymer-based light
emitting diodes, edited by H. SingNalwa, (San Diego: Academic press), p. 3
(2001).
35) I.D. Parker, J. Appl. Phys. 75, 1656 (1994).
36) M. Matsumura, T. Akai, M. Saito, T. Kimura, J. Appl. Phys. 79, 264, (1996).
37) J. H. Park, O. O. Park, J. W. Yu, J. K. Kim, and Y. C. Kim, Appl. Phys. Lett.
84, 1783 (2004).
38) L. S. Hung, C. W. Tang, and M. G. Mason, Appl. Phys. Lett. 73, 159 (1998).
39) L. M. Do, E. M. Han, Y. Niidome, and M. Fujihira, J. Appl. Phys.76, 5118
(1994).
40) McElvain, H. Antoniadis, M. R. Hueschen, J. N. Miller, D. M. Roitman, J. R.
Sheats, and R. L. Moon, J. Appl. Phys, 80, 6002 (1996).
41) Liar, J. He, X. Zhou, M. Lu, Z. H. Xiong, Z. B. Deng, X. y. Hou, and S. T.
Lee, J. Appl. Phys. 88, 2386 (2000).
42) D. O’Brien, M. S. Weaver, D. G. Lidzey, D. D. C. Bradley, Appl. Phys. Lett.
69, 881 (1996).
43) T.-W Lee, O. O. Park, Adv. Mater. 12, 801 (2000).
44) T.-W Lee, O. O. Park, J. Yoon, J.-J. Kim, Adv. Mater. 13, 211 (2001).
45) D. Braun, A. J. Heeger, Appl. Phys. Lett. 58, 1982 (1991).
46) S. Aratani, C. Zhang, K. Pakbaz, S. Hoger, F. Wudle, A. J. Heeger, J.
Electron Mater. 22, 745 (1994).
47) L. S. Hung, C. W. Tang, M. G. Mason, Appl. Phys. Lett. 70, 152 (1997).
48) G. E. Jabbour, Y. Kawabe, S. E. Shaheen, J. F. Wang, M. M. Morrell, B.
Kippelen, N. Peyghambarian, Appl. Phys. Lett. 71, 1762 (1997).
49) M. Matsumura, Y. Jinde, Appl. Phys. Lett. 73, 2872 (1998).
50) T.-F. Guo, F.-S. Yang, Z.-J. Tsai, T.-C. Wen, S.-N. Hsieh, and Y.-S. Fu, Appl.
Phys. Lett. 87, 013504 (2005).
51) T.-F. Guo, F.-S. Yang, Z.-J. Tsai, T.-C. Wen, S.-N. Hsieh, and Y.-S. Fu, Appl.
Phys. Lett. 88, 113501 (2006).
52) F. Huang, Y.-H. Niu, Y. Zhang, J.-W. Ka, M. S. Liu, A. K.-Y. Jen, Adv. Mater.
19, (2007).
53) Y. E. Kim, H. Park, J. J. Kim, Appl. Phys. Lett. 69, 599 (1996).
54) L.S. Hung, C.W. Tang, M.G. Mason, Appl. Phys. Lett. 70, 152 (1997).
55) P. Piromerium, H. Oh, Y. Shen, G.G. Malliaras, J. C. Scott, P.J. Brock, Appl.
Phys. Lett. 77, 2403 (2000).
56) T-H. Lee, J.C.A. Huang, G. L. Pakhomov , T.-F. Guo, T.C. Wen, Y-S. Huang,
C.C. Tsou, C-T. Chung,Y-C. Lin, Y.J. Hsu, Adv. Fun. Mater.19, (2007).
57) Y Cao, G Yu, ID Parker, AJ Heeger - Journal of Applied Physics 88, 3618
(2000).