簡易檢索 / 詳目顯示

研究生: 鄧筱光
Teng, Hsiao-Kuang
論文名稱: 浮動式濾床甲苯共代謝三氯乙烯生物阻塞現象改善研究
指導教授: 高銘木
Kao, Ming-Muh
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 129
中文關鍵詞: 共代謝生物阻塞三氯乙烯甲苯水力傳導度膨脹率
外文關鍵詞: bioclogging, cometabolism, hydraulic conductivity, dilation rate, trichloroethylene, toluene
相關次數: 點閱:93下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究主要針對甲苯共代謝三氯乙烯現地生物復育之生物阻塞工程瓶頸,藉由管柱濾料浮動化方式之連續流管柱試驗,探討管柱中生物阻塞現象之生成機制及影響因子,實驗共分為兩階段,第一階段為生物阻塞試驗,第二階段為濾床浮動化試驗。
      第一階段試驗中,現地混合菌確實適合使用於甲苯共代謝三氯乙烯,在管柱操作第5天後,濾床即開始出現阻塞情形,水力傳導度由啟動時之60 cm/min,降至結束時之32 cm/min,且管柱中進流端濾料顏色亦隨操作天數增加而由白轉黃褐色。
      第二階段試驗中,甲苯及三氯乙烯之初始濃度分別為20 mg/L及1 mg/L,初始菌數約為5.5×104 CFU/mL,操作時間均為15天,水力傳導度隨濾床濾料膨脹率增加而有所提升,當膨脹率為10%、20%、40%時,水力傳導度分別為100 cm/min、150 cm/min、260 cm/min,此時甲苯去除率為95%、75%、60%及三氯乙烯去除率為65%、45%、20%,當膨脹率越高時,因水流剪力及濾料顆粒碰撞摩擦導致微生物不易生長,而造成甲苯及三氯乙烯去除率降低。綜合研究結果,以膨脹率10%具有明顯之生物阻塞改善作用,且能達到一定程度之三氯乙烯去除率。

      The study focused on the bioclogging problem of in-situ cometabolic remediation of trichoroethylene by toluene injection. To discuss the mechanism and effect factors of the appearance of bioclogging in column by using floating filter of continuous column test. The experiment divided into two parts, the first stage was bioclogging test, and the second stage was floating filter test.
      In the first stage, in-situ mixed strains were suitable to make use of the cometabolic degradation of trichloroethylene by toluene. After the fifth day, the appearance of clogging was observed in the filter bed. In the test period, the hydraulic conductivity reduced from 60 cm/min to 32 cm/min. Also, the color of supporting media at the inlet was from white to brown when the operating days increased.
      In the second stage, the initial concentration of toluene and trichloroethylene were 20 mg/L and 1 mg/L. The initial colonies of toluene cometablic bacterium were 5.5×104 CFU/mL, and the operating days all were 15 days. The hydraulic conductivity increased when the dilation rate of supporting media increased. When the dilation rate were 10%、20%、40%, the hydraulic conductivities were 100 cm/min、150 cm/min、260 cm/min, respectively. The toluene removal efficiency were 95%、75%、60%, and the trichloroethylene removal efficiency were 65%、45%、20%, respectively. When the dilation rate was higher, microorganism grew difficultly because of the shear force and the friction from supporting media. It made the toluene and trichloroethylene removal efficiency reduce. In conclusion, as the dilation rate was 10%, it had obvious improved the appearance of bioclogging, and could obtain a better trichloroethylene removal efficiency.

    中文摘要………………………………………………………………i 英文摘要………………………………………………………………iii 致謝……………………………………………………………………v 目錄……………………………………………………………………vi 表目錄…………………………………………………………………x 圖目錄…………………………………………………………………xi 第一章 前言……………………………………………………………1 1-1 研究背景…………………………………………………………1 1-2 研究目的…………………………………………………………2 第二章 文獻回顧………………………………………………………3 2-1 土壤有機污染物 ………………………………………………3 2-2 土壤污染復育技術 ……………………………………………9 2-3 三氯乙烯之基本特性…………………………………………22 2-4 三氯乙烯之生物降解…………………………………………26 2-4-1 厭氧生物處理……………………………………………26 2-4-2 好氧生物處理……………………………………………26 2-5 生物阻塞現象…………………………………………………37 第三章 研究材料與方法 ……………………………………………40 3-1 研究材料………………………………………………………40 3-1-1 碳源………………………………………………………40 3-1-2 無機營養鹽………………………………………………40 3-1-3 培養基……………………………………………………42 3-1-4 菌種來源及培養…………………………………………42 3-1-5 管柱連續流試驗裝置……………………………………45 3-2 研究流程………………………………………………………51 3-2-1 主要研究架構……………………………………………51 3-2-2 管柱試驗步驟……………………………………………51 3-3 分析方法………………………………………………………54 3-3-1 氣體濃度分析方法………………………………………54 3-3-2 菌數測定方法……………………………………………55 3-3-3 溶氧測定方法……………………………………………56 3-3-4 pH值測定方法……………………………………………56 3-3-5 水力傳導度測定方法……………………………………57 第四章 結果與討論 …………………………………………………58 4-1 菌株培養與馴養………………………………………………58 4-2 液態甲苯注入試驗……………………………………………66 4-2-1 水力傳導度變化…………………………………………66 4-2-2 出流菌數變化……………………………………………66 4-2-3 溶氧含量變化……………………………………………73 4-2-4 pH變化……………………………………………………73 4-2-5 甲苯含量變化……………………………………………73 4-2-6 生物阻塞現象探討………………………………………76 4-3 不同膨脹率浮動式濾床試驗…………………………………77 4-3-1 濾床填充介質膨脹率10% ………………………………77 4-3-2 濾床填充介質膨脹率20% ………………………………83 4-3-3 濾床填充介質膨脹率40% ………………………………91 4-3-4 浮動式濾床對生物阻塞現象影響評估…………………98 第五章 結論與建議…………………………………………………106 5-1 結論 …………………………………………………………106 5-2 建議 …………………………………………………………107 第六章 參考文獻……………………………………………………109

    環境法令研究會編集,「日本環境六法」,日本,1998。
    王銀波,「土壤污染區整治之準則及考慮」,第五屆土壤污染防治研討會論文集,第17-18頁,1997。
    古晏菁,「土壤污染整治技術介紹」,工業污染防治報導,第140期,第3-5頁,1999。
    行政院勞工委員會,「物質安全資料表及參考範例」,1997。
    行政院經濟部工業局,「土壤與地下水污染整治技術手冊-生物處理技術」,2004。
    江美幸,「甲烷分解菌及苯環類分解菌共代謝三氯乙烯之比較」,碩士論文,國立中興大學環境工程研究所,台中,1995。
    李安,「職場的隱形殺手—揮發性有機化合物」,環保資訊,第2期,第6-10頁,1992。
    李正怡、李春樹、高銘木「利用甲苯共代謝三氯乙烯之生物濾床效率提升之研究」,第十六屆空氣污染控制技術研討會論文集,第737-742頁,1999。
    林建芬、趙聖傑、盧至人、李季眉,「甲烷分解菌對三氯乙烯喜氧生物分解之影響」,第十八屆廢水處理技術研討會論文集,第287-291頁,1993。
    李正怡,「利用生物濾床共代謝三率乙烯效率提升之研究」,碩士論文,國立成功大學環境工程研究所,台南,1999。
    呂淑慧,「酚分解菌共代謝三氯乙烯之連續流試驗」,國立中興大學環境工程研究所,台中,1995。
    郭家倫、曾迪華、黃雪莉,「好氧性共代謝生物分解含氯脂肪族化合物之回顧與評析」,國立中央大學環境工程學刊,第5期,第23-38頁,1998。
    陳致谷、張添晉,「土壤復育工程技術」,工業污染防治,第45期,第43-65頁,1993。
    蔡文田、邱伸彥,「蒸氣脫脂用含氯溶劑之特性管制和污染預防」,工業污染防治,第41期,第145-160頁,1992。
    蔡文田,「含氯有機溶液之毒性及新陳代謝機制」,工業污染防治﹐第43期,第175-187頁,1992。
    蔡文田,「含氯溶劑可行減廢技術介紹」,工業污染防治,第47期,第171-182頁,1993。
    鄭顯榮、吳文娟,「土壤污染防治基本政策與推動方向」,第二屆土壤污染防治研討會論文集,第21-36頁,1990。
    盧滄海、賴龍山,「廢溶劑回收可行性探討」,工業污染防治,第29期,第102-177頁,1989。
    董上銘、郭明錦、李春樹、韓吟龍,「以甲苯半連續馴養現地微生物共代謝三氯乙烯」,第八屆分析技術研討會論文集, 2003.

    Alvarez-Cohen, L. and P. L. McCarty, “Effects of toxicity, aeration, and reductant supply on trichloroethylene transformation by a mixed methanotroohic culture”, Appl. Environ. Microbiol., Vol. 57, No. 1, p. 228-235, 1991a.

    Alvarez-Cohen, L. and P. L. McCarty, “Product toxicity and cometabolic competitive inhibition modeling of chloroform and trichloroethylene transformation by methanotrophic resting cells”, Appl. Environ. Microbiol., Vol. 57, No. 4, p. 1031-1037, 1991b.

    Avnimelech, Y., and Z. Nevo, “Biological clogging of sands”, Soil Sci., 98, 222-226, 1964.

    Barkach, J. H., J. Dragun, and S. A. Mason, “Soil and groundwater clean-up standards as approached by the michigan department of natural resources”, The Environmental Professional, Vol. 12, p. 319-333, 1990.

    Brusseau, G. A., H. C. Tsien, R. S. Hanson, and L. P. Wackett, “Optimization of trichloroethylene oxidation by methanotrophs and the use of a colorimetric assey to detect soluble methane monooxygenase activity”, Biodegradation, Vol. 1, p. 19-29, 1990.

    Chang, H. L. and L. Alvarez-Cohen, “Transformation capacities of chlorinated organics by mixed cultures enriched on methane, propane, toluene, or phenol”, Biotechnology and Bioengineering, Vol. 45, p. 440-449, 1995.

    Chang, A. C., W. R. Olmstead, J. B. Johanson, and G. Yamashita, “The sealing mechanism of wastewater ponds”, J. Water Pollut. Control Fed., 46, 1715-1721,1974.

    Dabrock, B., J. Riedel, J. Bertram, and G. Gottschalk, “Isopropylbenzene (cumene)-a new substrate for the isolation of trichloroethene-degrading bacteria”, Arch. Microbiol., Vol. 158, p. 9-13, 1992.

    Ely, R. L., K. J. Williamson, M. R. Hyman, and D. J. Arp, “Cometabolism of chlorinated Solvents by nitrifying bacteria: kinetics, substrate interactions, toxicity effects, and bacterial response”, Biotechnology and Bioengineering, Vol. 54, p. 520-534, 1997.

    Ensign, S. A., M. R. Hyman, and D. J. Arp, “Cometabolic degradation of chlorinated alkenes by alkene monooxygenase in a propylene-grown Xanthobacter strain”, Appl. Environ. Microbiol., Vol. 58, No. 9, p. 3038-3046, 1992.

    Ewers, J., W. Clemens, and H. J. Knackmuss, “Biodegradation of chloroethenes using isoprene as co-substrate”, International Symposium on Environmental biotechnology, Vol. 1, Royal Flemish Society of Engineers : Ostead, Belgium, p. 77-83, 1991.

    Fogel, M. M., A. R. Taddeo, and S. Fogel, “Biodegradation of chlorinated ethenes by a methane-utilizing mixed culture”, Appl. Environ. Microbiol., Vol. 51, No. 4, p. 720-724, 1986.

    Folsom, B. R., P. J. Chapman, and P. H. Pritchard, “Phenol and trichloroethylene degradation by Pseudomonas cepacia G4: kinetics and interactions between substrate”, Appl. Environ. Microbiol., Vol. 56, No. 5, p. 1279-1285, 1990.

    Fox, B. G., J. G. Borneman, L. P. Wackett, and J. D. Lipscomb, “Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: mechanistic and environmental applications”, Biochemistry, Vol. 29, p. 6419-6427, 1990.

    Henson, J. M., M. V. Yates, J. W. Cochran, and D. L. Shackleford, “Microbial removal of halogenated methanes, ethanes, and ethylenes in an aerobic soil exposed to methane”, FEMS Microbial Ecol, Vol. 53, p. 193-201, 1988.

    Hopkins, G. D., L. Semprini, and P. L. McCarty, “Microcosm and in situ field studies of enhanced biotransformation of trichloroethylene by phenol-utilizing microorganisms”, Appl. Environ. Microbiol., Vol. 59, No. 7, p. 2277-2285, 1993a.

    Hopkins, G. D., J. Munakata, L. Semprini, and P. L. McCarty, “Trichloroethylene concentration effects on pilot field-scale in-situ groundwater bioremediation by phenol-oxidizing microorganisms”, Environ. Sci. Technol, Vol. 27, p. 2542-2547, 1993b.

    Jawson, M. D., “Soil clogging by septic tank effluent1: Causes, methods of correction”, M.S. thesis, Univ. of Wisconsin, Madison, 1976.

    Julie, A. S. and D. Ramey, “In situ biological treatment of TCE-impacted soil and groundwater: demonstration results”, Environmental Process, Vol. 16, No. 4, p. 287-296, 1997.

    Laak, R., “Influence of domestic wastewater pretreatment on soil clogging”, J. Water Pollut. Control Fed., 42, 1495-1500,1970.

    Large, P. J., “Methylotrophy and methanogenesis”, American Society for Microbiology, Washington, DC, p. 25-26, 1983.

    Leahy, J. G. and R. R. Colwell, “Microbial degradation hydrocarbons in the environment”, Microbiological Reviews, Vol. 54, p. 305-315, 1990.

    Little, C. D., A. V. Palumbo, S. E. Herbes, M. E. Lidstrom, R. L. Tyndall, and P. J. Gilmer, “Trichloroethylene biodegradation by a methane-oxidizing bacterium”, Appl. Environ. Microbiol., Vol. 54, No. 4, p. 951-956, 1988.

    Lovelace, K. A., “Evaluating the technical impracticability of groundwater cleanup”, 1997 International Conference Groundwater Quality Protection, Taipei, p.165-179, 1997.

    M. C. T. Kuo, C. M. Chen, C. H. Lin, H. C. Fang, C. H. Lee, “Surveys of Volatile Organic Compounds in Soil and Groundwater at Industrial Sites in Taiwan”, Bulletin of Environmental Contamination & Toxicology, Vol. 65, No.5, pp. 654-659, 2000a.

    M. C. T. Kuo, K.F. Liang, Y.L. Han, C.S. Lee, K.C. Fan and C.J. Lu, Field evaluation of toluene-vapor delivery for in situ aerobic cometabolism of trichloroethylene. Proceeding of Asian-Pacific Regional Conference on Practical Environmental Technologies, Session C1-7-C1-12, Tainan, Taiwan, Dec. 18-21, 2003.

    McCalla, T. M., “Studies on the effect of microorganisms on rate of percolation of water through soils”, Soil Sci. Soc. Am. Proc., 15,182-186,1950.

    Mackenbrock, K., “Treatment of contaminated soils by a combination of suitable, proven technologies”, Contaminated soil, Vol. 2, Kluwer Academic Publishers, Netherlands, 1993.

    McCarty, P. L., Goltz, M. N., Hopkins, G. D., Dolan, M. E., Allan, J. P., Kawakami, B. T., and Carrothers, T.J., “Full-Scale Evalution of In Situ Cometabolic Degradation of Trichloroethylene in Groundwater through Toluene Injection”, Environ. Sci. Technol., v. 32, n. 1, pp. 88-100,1998.

    McCarty, P. L., M. Reinhard, and B. E. Rittmann., “Trace organics in groundwater”, Environ. Sci. Technol., Vol. 15, No. 1, p. 40-42, 1981.

    McCarty, P. L., “Bioengineering issues related to in situ remediation of contaminated soils and groundwater”, Environ. Biotechnol., p. 143-161, 1988.

    Mitchell, R., and Z. Nevo, “Effect of bacterial polysaccharide accumulation on infiltration of eater through sand”, Apol. Microbiol, 12:219-223,1964.

    Nelson, M. J. K., S. O. Montgomery, W. R. Mahaffey, and P. H. Pritchard, “Biodegradation of trichloroethylene and involvement of an aromatic biodegradative pathway”, Appl. Environ. Microbiol., Vol. 53, No. 5, p. 949-954, 1987.

    Nelson, M. J. K., S. O. Montgomery, and P. H. Pritchard, “Trichloroethylene metabolism by microorganisms that degrade aromatic compounds”, Appl. Environ. Microbiol., Vol. 54, No. 2, p. 604-606, 1988.

    Oberdorfer, J. A., and F. L. Peterson, “Waste-Water injection:geochemical clogging processes”, Groundwater, 23:753-761,1985.

    Okubo. T., and J. Matsumoto, “Biological clogging of sand and changes of organic constituents during artificial recharge, Water Res. 17, 813-821, 1983.

    Oldenhuis, R., R. L. J. M. Vink, D. B. Janssen, and B. Witholt, “Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase”, Appl. Environ. Microbiol., Vol. 55, No. 11, p. 2819-2826, 1989.

    Phelps, T. J., J. J. Niedzielski, R. M. Schram, S. E. Herbes, and D. C. White, “Biodegradation of trichloroethylene in continuous-recycle expanded-beb bioreactors” , Appl. Environ. Microbiol., Vol. 56, p. 1702-1709, 1990.

    Pignatello, J. J. and B. Xing, “Mechanisms of slow sorption of organic Chemicals to natural particles”, Environ. Sci. technol., Vol. 30, No. 1, p. 1-11, 1996.

    Rasche, M. E., M. R. Hyman, and D. J. Arp, “Factors limiting aliphatic chlorocarbon degradation by Nitrosomonas europaea: cometabolic inactivation of ammonia monooxygenase and substrate specificity”, Appl. Environ. Microbiol., Vol. 57, No. 10, p. 2986-2994, 1991.
    Ripley, D. P., and Z. A. Saleem, “ Clogging in simulated glacial aquifers due to artificial recharge, Water Resour. Tes., 9, 1047-1057,1973.

    Shaw, J. C., B. Bramhill, N. C. Wardlaw, and J. W. Costerton, “Bacterial fouling in a model core system”, Appl. Environ. Microbiol, 49, 693-701,1985.

    Shields, M. S., S. O. Montgomery, P. J. Chapmen, S. M. Cuskey, and P. H. Pritchard, “Novel pathway of toluene catabolism in the trichloroethylene-degrading bacterium G4”, Appl. Environ. Microbiol., Vol. 55, No. 4, p. 1624-1629, 1989.

    Shields, M. S., S. O. Montgomery, S. M. Cuskty, P. J. Chapman, and P. H. Pritchard, “Mutants of Pseudomonas cepacia G4 defective in catabolism of aromatic compounds and trichloroethylene”, Appl. Environ. Microbiol., Vol. 57, No. 7, p. 1935-1941, 1991.

    Skopp, J., M. D. Jawson, and J. W. Doran, “Steady-state aerobic microbial activity as a function of soil water content”, Soil Sci. Soc. Am. J., Vol. 54, p. 1619-1625, 1990.

    Speitel, G. E. and D. Mclay, “Biofilm reactors for treatment of gas streams containing chlorinated solvents”, J. Envir. Engrg., Vol. 119, No. 2, p. 658-678, 1993.

    Taylor, S. W., and P. R. Jaffe, “Biofilm growth and the related changes in the physical properties of a porous medium. l. Experimental investigation”, Water Resour. Res., 26, 2153-2159, 1990.

    Tortora G. J., B. R. Funke and C. L. Case, “Microbiology an introduction”, 5th edition, The Benjamin/Cummings Publishing Company, Inc., p. 664-690, 1995.

    Van Beek, C. G. E. M., and D. van der Kooij, “Sulfate-reducing bacteria in ground water from clogging and non-clogging shallow wells in the Metherlands river region”, Groundwater, 20, 298-302, 1982.

    Vandevivere, P., and P. Baveye, “Saturated hydraulic conductivity reduction caused by aerobic bacteria in sand columns”, Soil Sci. Soc. Am. J., 56, 1-13, 1992.

    Vannelli, T., M. Logan, D. M. Arciero, and A. B. Hooper, “Degradation of halogenated aliphatic compounds by the ammonia-oxidizing bacterium Nitrosomonas europaea”, Appl. Environ. Microbiol., Vol. 56, p. 1169-1171, 1988.

    Vannelli, T., M. Logan, D. M. Arciero, and A. B. Hooper, “Degradation of halogenated aliphatic compounds by the ammonia-oxidizing bacterium Nitrosomonas europaea”, Appl. Environ. Microbiol., Vol. 56, No. 4, p. 1169-1171, 1990.

    Vogel, T. M. and P. L. McCarty, “Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions”, Appl. Environ. Microbiol., Vol. 49, No. 5, p. 1080-1083, 1985.

    Vogel, T. M., C. S. Criddle, and P. L. McCarty, “Transformation of halogenated aliphatic compounds”, Environ. Sci. Technol., Vol. 21, No. 8, p. 722-736, 1987.

    Wackett, L. P. and D. T. Gibson, “Degradation of trichloroethylene by toluene dioxygenase in whole-cell studies with Pseudomonas putida F1”, Appl. Environ. Microbiol., Vol. 54, No. 7, p. 1703-1708, 1988.

    Wackett, L. P. and S. R. Householder, “Toxicity of trichloroethylene to Pseudomonas putida F1 is mediated by toluene dioxygenase”, Appl. Environ. Microbiol., Vol. 55, No. 10, p. 2723-2725, 1989a.

    Wackett, L. P., G. A. Brusseau, S. R. Householder, and R. S. Hanson, “Survey of microbial oxygenases: trichloroethylene degradation by propane-oxidizing bacteria”, Appl. Environ. Microbiol., Vol. 55, No. 11, p. 2960-2964, 1989b.

    Wilcox, D. W., R. L. Autenrieth, and J. S. Bonner, “propane-induced bio-degradation of vapor phase trichloroethylene”, Biotechnol. Bioeng., Vol. 46, p. 333-342, 1995.

    Wilson, J. T. and B. G. Wilson, “Biotransformation of trichloroethylene in soil” , Appl. Environ. Microbiol., Vol. 49, No. 1, p. 242-243, 1985.

    下載圖示 校內:立即公開
    校外:2005-08-09公開
    QR CODE