簡易檢索 / 詳目顯示

研究生: 鄭文惠
Cheng, Wen-Hui
論文名稱: 添加鋰元素之氧化鋅作為反轉式有機太能陽電池之陰極緩衝層
Lithium Incorporated Zinc Oxide as Cathode Buffer Layer in Inverted P3HT:ICBA Organic Photovoltaics
指導教授: 陳貞夙
Chen, Jen-Sue
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 129
中文關鍵詞: 鋰鋅氧化物氧空缺載子傳輸阻抗分析再結合壽命
外文關鍵詞: LZO NPs, oxygen vacancy, charge transport, impedance, recombination lifetime
相關次數: 點閱:89下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在有機太陽能電池的研究中,常使用氧化鋅作為陰極緩衝層材料,以增進電子的傳輸,且具有阻擋電洞的效果,進而提升元件效率。本研究將鋰元素添加至氧化鋅中,分別用奈米顆粒合成法及溶液法製備出鋰鋅氧化物奈米顆粒(LZO NPs)及鋰鋅氧化物薄膜(LZO film),並討論不同鋅鋰莫耳比(Zn:Li = 10:0, 10:0.5, 10:2)所製成的奈米顆粒或薄膜,作為陰極緩衝層對P3HT:ICBA有機太陽能電池之特性影響。本實驗之太陽能電池採用反轉式結構,藉以避免銦錫氧化物ITO基板受陽極緩衝層PEDOT:PSS腐蝕影響,其結構由下至上分別為:ITO/ LZO NPs or LZO film/ P3HT:ICBA/ PEDOT:PSS/ Au/ Ag,元件的工作面積為0.16 cm2。
    研究結果顯示,以溶液法製備鋰鋅氧化物薄膜作為陰極緩衝層,在添加少量鋰的情況,可使光電轉換效率由2.20%(ZnO film device)提升至2.54%(5%-LZO film device),此時開路電壓為0.84 V,短路電流為6.83 mA/cm2,填充因子為0.44。但若增加鋰添加量,則光電轉換效率下降至1.84%(20%-LZO film device),此時開路電壓為0.78V,短路電流為6.29 mA/cm2,填充因子為0.38。而採用奈米顆粒合成法製備鋰鋅氧化物奈米顆粒,少量添加鋰可使光電轉換效率更加提升,由2.36%(ZnO NPs device)提升至3.15%(5%-LZO NPs device),此時開路電壓為0.86 V,短路電流為7.54 mA/cm2,填充因子為0.49。但若增加鋰添加量,則光電轉換效率下降至2.05%(20%-LZO NPs device),此時開路電壓為0.82 V,短路電流為6.18 mA/cm2,填充因子為0.40。
    在材料分析方面,二次離子質譜儀可偵測出鋰元素確已添入氧化鋅奈米顆粒中。穿透式電子顯微鏡分析得知添加鋰元素於奈米顆粒後沒有產生其他結晶相,仍由氧化鋅結晶相主導,以溶液法製備的鋰鋅氧化物薄膜(經200°C退火)則呈現非晶相。由紫外光-可見光光學分析的結果得知,添加鋰元素不會使能隙寬度明顯改變。電阻率的量測結果顯示,相較於溶液法製備的薄膜,奈米顆粒有較好的導電性,且導電性隨鋰元素添加量增加而提升。表面形貌以掃瞄式電子顯微鏡及原子力顯微鏡進行分析,發現添加少量鋰元素表面較平坦,添加多量是表面粗糙度變大,界面平整性會直接影響載子於界面傳輸的阻力。
    X光電子能譜可分析陰極緩衝層之表層與內層氧空缺的含量,佐證鋰原子進入氧化鋅結構中的角色,進而了解鋰鋅氧化物對於太陽能池之電子傳輸及再結合的影響。紫外光電子能譜可得能帶相關資訊,費米能階抬升0.6eV,佐證氧空缺缺陷能階的存在。阻抗分析求得之載子再結合壽命可對應到元件特性,5%-LZO NPs device有最高的再結合壽命2176 μs,較長的再結合壽命代表載子有較高的機會被傳遞至元件外部,以達到較高的光電轉換效率。
    在奈米顆粒與薄膜兩種系統中,添加少量鋰元素都具有提升元件性質的效果,故導入適量的氧空缺可以幫助載子傳輸,降低再結合的發生。然而當添加量增至20%時,內層及表層氧空缺的增加不匹配,再結合的可能性增加,載子再結合壽命變短,導致元件光電轉換效率不增反降。

    In the research of organic solar cell, zinc oxide is commonly used as cathode buffer layer awing to the ability of electron-transport and hole-blocking. In this work, lithium incorporated zinc oxide nanoparticles (LZO NPs) by nanoparticles synthesizing route and lithium incorporated zinc oxide film (LZO film) by solution process with different zinc lithium molar ratio (Zn:Li = 10:0, 10:0.5, 10:2) are successfully synthesized to form a cathode buffer layer in the inverted solar cell structure of ITO/ LZO NPs or LZO film/ P3HT:ICBA/ PEDOT:PSS/ Au/ Ag with 0.16 cm2 working area.
    As compared with the ZnO film buffer layer, a substantial increase in power conversion efficiency from 2.20% to 2.54% is achieved by applying 5%-LZO film buffer layer, with Voc of 0.84 V, Jsc of 6.83 mA/cm2, and FF of 0.44. However, further addition of lithium precursor to 20% will reduce power conversion efficiency to 1.84%, with Voc of 0.78 V, Jsc of 6.29 mA/cm2, and FF of 0.38. As compared with the ZnO NPs buffer layer, power conversion efficiency can further enhanced from 2.36% to 3.15% by applying 5%-LZO NPs buffer layer, with Voc of 0.86 V, Jsc of 7.54 mA/cm2, and FF of 0.49. More incorporation of 20% lithium in buffer layer leads to lower power conversion efficiency of 2.05%, with Voc of 0.82 V, Jsc of 6.18 mA/cm2, and FF of 0.40.
    Several analysis techniques are applied to understand the lithium incorporating effect. At first, the existence of lithium in zinc oxide nanoparticles is proved by secondary ion mass spectroscopy (SIMS). Transmission electron microscopy (TEM) analysis confirms that no other crystal phase formed in nanoparticles after lithium incorporation, zinc oxide crystal phase is dominant. The structure of lithium incorporated zinc oxide film after 200°C annealing is still amorphous. From the result of UV/visible spectrophotometer (UV-vis), no obvious change of energy bandgap is introduced by lithium doping. The resistivity of nanoparticles can be measured by four-point probe station, the conductivity increase as doping concentration increase.
    The surface morphology of cathode buffer layer is analyzed by scanning electron microscope (SEM) and atomic force microscope (AFM), incorporation of 5% lithium leads to smoother surface, but roughness is obviously raised with incorporation of 20% lithium. The uniformity at interface will directly influence carrier transport resistance. X-ray photoelectron spectroscopy (XPS) analysis shows the distribution of oxygen vacancy at the surface and in the bulk, which results from incorporation of lithium in zinc oxide structure. Ultraviolet photoelectron spectroscopy (UPS) informs the upward shift of Fermi level with 0.6 eV, which proves the existence of suitable energy level. Impedance measurement demonstrates that the recombination lifetime is substantially extended, which indicates a higher probability for carrier extraction and leads to its advanced performance. The 5%-LZO NPs device shows the highest recombination lifetime of 2176 μs.
    In both nanoparticles and film system, lithium incorporation of 5% can improve device performance. The suitable energy level of oxygen vacancy facilitates electron transport, and the easier electron extraction to the cathode implies lower probability to recombine with holes. However, when lithium precursor concentration increases to 20%, the non-comparable increase of oxygen vacancy at the surface may lead to more carrier recombination and poor device performance.

    摘要 II Abstract IV 誌謝 VI 目錄 VIII 表目錄 XII 圖目錄 XIV 第1章 緒論 1 1-1 前言 1 1-2 研究動機 4 第2章 理論基礎與文獻回顧 6 2-1 太陽能光譜 6 2-2 太陽能電池原理[12] 8 2-3 太陽能電池等效電路 10 2-4 有機太陽能電池 12 2-4.1 有機太陽能電池操作原理 12 2-4.2 提升有機太陽能電池效率 15 2-4.3 主動層材料 21 2-4.4 反轉式結構有機太陽能電池 22 2-5 緩衝層的用途 23 2-6 文獻比較 24 第3章 實驗方法與步驟 25 3-1 實驗材料 25 3-1.1 基板(substrate) 25 3-1.2 主動層材料(active layer) 25 3-1.3 陽極緩衝層(anode buffer layer) 26 3-1.4 陰極緩衝層(cathode buffer layer) 26 3-1.5 電極材料(electrode) 27 3-2 實驗設備 28 3-2.1 旋轉塗佈儀(spin coater) 28 3-2.2 熱蒸鍍機(thermal evaporation system) 28 3-3 實驗流程 29 3-3.1 奈米顆粒合成法製備鋰鋅氧化物奈米顆粒(LZO NPs) 30 3-3.2 溶液法製備鋰鋅氧化物薄膜(LZO film) 31 3-3.3 製備有機太陽能電池 32 3-4 分析儀器 36 3-4.1 二次離子質譜儀(SIMS) 36 3-4.2 穿透式電子顯微鏡(TEM) 37 3-4.3 低掠角X光繞射儀(GIAXRD) 38 3-4.4 紫外光-可見光光學儀(UV/vis) 39 3-4.5 四點探針儀(four-point probe) 40 3-4.6 掃瞄式電子顯微鏡(SEM) 41 3-4.7 原子力顯微鏡(AFM) 42 3-4.8 X光光電子能譜儀(XPS) 43 3-4.9 紫外光光電子能譜儀(UPS) 44 3-4.10 太陽能電池效率量測裝置 45 3-4.11 精密阻抗分析儀 46 第4章 實驗結果與討論 47 4-1 元件結構 47 4-2 使用奈米顆粒合成法製備LZO奈米顆粒之材料特性分析 49 4-2.1 LZO NPs之SIMS元素分析 49 4-2.2 LZO NPs之TEM影像分析 53 4-2.3 LZO NPs之UV-VIS光學分析 57 4-2.4 LZO NPs之電阻率分析 60 4-2.5 LZO NPs之SEM影像分析 63 4-2.6 LZO NPs之AFM影像分析 65 4-2.7 LZO NPs之XPS能譜分析 68 4-2.8 LZO NPs之UPS能譜分析 73 4-3 LZO NPs作為陰極緩衝層之反轉式有機太陽能電池特性分析 76 4-3.1 LZO NPs元件之TEM影像分析 76 4-3.2 LZO NPs元件之電壓電流曲線分析 79 4-3.3 LZO NPs元件之阻抗分析 83 4-3.4 LZO NPs元件之鋰添加作用機制 87 4-4 使用溶液法製備LZO薄膜之材料特性分析 91 4-4.1 LZO film之GIAXRD分析 91 4-4.2 LZO film之UV-VIS光學分析 93 4-4.3 LZO film之電阻率分析 96 4-4.4 LZO film之SEM影像分析 98 4-4.5 LZO film之AFM影像分析 100 4-4.6 LZO film之XPS能譜分析 103 4-5 LZO film作為陰極緩衝層之反轉式有機太陽能電池特性分析 108 4-5.1 LZO film元件之TEM影像分析 108 4-5.2 LZO film元件之電壓電流曲線分析 110 4-5.3 LZO film元件之阻抗分析 114 4-5.4 LZO film元件之鋰添加作用機制 117 4-6 LZO NPs與LZO film綜合比較 119 第5章 結論 121 第6章 參考資料 123

    1. NREL. http://www.nrel.gov/ncpv/images/efficiency_chart.jpg
    2. Ginley, D., Green, M. A. and Collins, R., Solar Energy Conversion Toward 1 Terawatt, MRS Bulletin, 33(4), 355, (2008).
    3. Brabec, C. J., Hauch, J. A., Schilinsky, P. and Waldauf, C., Production aspects of organic photovoltaics and their impact on the commercialization of devices, MRS Bulletin, 30(1), 50, (2005).
    4. Green, M. A., Emery, K., Hishikawa, Y., Warta, W. and Dunlop, E. D., Solar cell efficiency tables (version 39), Progress in Photovoltaics: Research and Applications, 20(1), 12, (2012).
    5. Cheng, F., Fang, G., Fan, X., Huang, H., Zheng, Q., Qin, P., Lei, H. and Li, Y., Enhancing the performance of P3HT:ICBA based polymer solar cells using LiF as electron collecting buffer layer and UV–ozone treated MoO3 as hole collecting buffer layer, Solar Energy Materials and Solar Cells, 110, 63, (2013).
    6. Brabec, C. J., Shaheen, S. E., Winder, C., Sariciftci, N. S. and Denk, P., Effect of LiF/metal electrodes on the performance of plastic solar cells, Applied Physics Letters, 80(7), 1288, (2002).
    7. Jiang, L., Li, A., Deng, X., Zheng, S. and Wong, K.-Y., Effects of cathode modification using spin-coated lithium acetate on the performances of polymer bulk-heterojunction solar cells, Applied Physics Letters, 102(1), 013303, (2013).
    8. Lloyd, M. T., Lee, Y.-J., Davis, R. J., Fang, E., Fleming, R. M., Hsu, J. W. P., Kline, R. J. and Toney, M. F., Improved Efficiency in Poly(3-hexylthiophene)/Zinc Oxide Solar Cells via Lithium Incorporation, The Journal of Physical Chemistry C, 113(41), 17608, (2009).
    9. Rostalski, J. and Meissner, D., Monochromatic versus solar efficiencies of organic solar cells, Solar Energy Materials and Solar Cells, 61(1), 87, (2000).
    10. Deibel, C. and Dyakonov, V., Polymer–fullerene bulk heterojunction solar cells, Reports on Progress in Physics, 73(9), 096401, (2010).
    11. Nunzi, J.-M., Organic photovoltaic materials and devices, Comptes Rendus Physique, 3(4), 523, (2002).
    12. Neamen, D. A. and Pevzner, B., Semiconductor physics and devices: basic principles. 3 ed, New York: McGraw-Hill, 2003.
    13. Venkataraman, D., Yurt, S., Venkatraman, B. H. and Gavvalapalli, N., Role of molecular architecture in organic photovoltaic cells, The Journal of Physical Chemistry Letters, 1(6), 947, (2010).
    14. Potscavage, W. J., Sharma, A. and Kippelen, B., Critical Interfaces in Organic Solar Cells and Their Influence on the Open-Circuit Voltage, Accounts of Chemical Research, 42(11), 1758, (2009).
    15. Moliton, A. and Nunzi, J. M., How to model the behaviour of organic photovoltaic cells, Polymer International, 55(6), 583, (2006).
    16. Pope, M. and Swenberg, C., Electronic processes in organic molecular crystals, Oxford University Press, New York Tang CW, VanSlyke SA (1987) Organic electroluminescent diodes. Appl Phys Lett, 51(913), 89, (1982).
    17. Walzer, K., Maennig, B., Pfeiffer, M. and Leo, K., Highly Efficient Organic Devices Based on Electrically Doped Transport Layers, ChemInform, 38(31), no, (2007).
    18. Li, G., Zhu, R. and Yang, Y., Polymer solar cells, Nature Photonics, 6(3), 153, (2012).
    19. Haugeneder, A., Neges, M., Kallinger, C., Spirkl, W., Lemmer, U., Feldmann, J., Scherf, U., Harth, E., Gügel, A. and Müllen, K., Exciton diffusion and dissociation in conjugated polymer/fullerene blends and heterostructures, Physical Review B, 59(23), 15346, (1999).
    20. Archer, M. D. and Hill, R., Clean electricity from photovoltaics. London: Imperial College Press, 2001.
    21. Mihailetchi, V., Blom, P., Hummelen, J. and Rispens, M., Cathode dependence of the open-circuit voltage of polymer: fullerene bulk heterojunction solar cells, Journal of Applied Physics, 94(10), 6849, (2003).
    22. Scharber, M. C., Mühlbacher, D., Koppe, M., Denk, P., Waldauf, C., Heeger, A. J. and Brabec, C. J., Design rules for donors in bulk‐heterojunction solar cells—Towards 10% energy‐conversion efficiency, Advanced Materials, 18(6), 789, (2006).
    23. Maurano, A., Hamilton, R., Shuttle, C. G., Ballantyne, A. M., Nelson, J., O’Regan, B., Zhang, W., McCulloch, I., Azimi, H., Morana, M., Brabec, C. J. and Durrant, J. R., Recombination Dynamics as a Key Determinant of Open Circuit Voltage in Organic Bulk Heterojunction Solar Cells: A Comparison of Four Different Donor Polymers, Advanced Materials, 22(44), 4987, (2010).
    24. Chen, H.-Y., Hou, J., Zhang, S., Liang, Y., Yang, G., Yang, Y., Yu, L., Wu, Y. and Li, G., Polymer solar cells with enhanced open-circuit voltage and efficiency, Nat Photon, 3(11), 649, (2009).
    25. Credgington, D., Hamilton, R., Atienzar, P., Nelson, J. and Durrant, J. R., Non-Geminate Recombination as the Primary Determinant of Open-Circuit Voltage in Polythiophene:Fullerene Blend Solar Cells: an Analysis of the Influence of Device Processing Conditions, Advanced Functional Materials, 21(14), 2744, (2011).
    26. Kim, J. Y., Lee, K., Coates, N. E., Moses, D., Nguyen, T.-Q., Dante, M. and Heeger, A. J., Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing, Science, 317(5835), 222, (2007).
    27. Kippelen, B. and Bredas, J.-L., Organic photovoltaics, Energy & Environmental Science, 2(3), 251, (2009).
    28. Stolz Roman, L., Inganäs, O., Granlund, T., Nyberg, T., Svensson, M., Andersson, M. R. and Hummelen, J. C., Trapping light in polymer photodiodes with soft embossed gratings, Advanced Materials, 12(3), 189, (2000).
    29. Li, X., Choy, W. C. H., Huo, L., Xie, F., Sha, W. E. I., Ding, B., Guo, X., Li, Y., Hou, J., You, J. and Yang, Y., Dual Plasmonic Nanostructures for High Performance Inverted Organic Solar Cells, Advanced Materials, 24(22), 3046, (2012).
    30. Bavel, S. S. v., Sourty, E., With, G. d. and Loos, J., Three-dimensional nanoscale organization of bulk heterojunction polymer solar Cells, Nano Letters, 9(2), 507, (2008).
    31. Yang, X., Loos, J., Veenstra, S. C., Verhees, W. J., Wienk, M. M., Kroon, J. M., Michels, M. A. and Janssen, R. A., Nanoscale morphology of high-performance polymer solar cells, Nano Letters, 5(4), 579, (2005).
    32. Erb, T., Zhokhavets, U., Gobsch, G., Raleva, S., Stühn, B., Schilinsky, P., Waldauf, C. and Brabec, C. J., Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cells, Advanced Functional Materials, 15(7), 1193, (2005).
    33. Brown, P. J., Thomas, D. S., Köhler, A., Wilson, J. S., Kim, J.-S., Ramsdale, C. M., Sirringhaus, H. and Friend, R. H., Effect of interchain interactions on the absorption and emission of poly (3-hexylthiophene), Physical Review B, 67(6), 064203, (2003).
    34. Nayak, P. K., Garcia-Belmonte, G., Kahn, A., Bisquert, J. and Cahen, D., Photovoltaic efficiency limits and material disorder, Energy & Environmental Science, 5(3), 6022, (2012).
    35. Günes, S., Neugebauer, H. and Sariciftci, N. S., Conjugated Polymer-Based Organic Solar Cells, Chemical Reviews, 107(4), 1324, (2007).
    36. Chen, T. A. and Rieke, R. D., The first regioregular head-to-tail poly(3-hexylthiophene-2,5-diyl) and a regiorandom isopolymer: nickel versus palladium catalysis of 2(5)-bromo-5(2)-(bromozincio)-3-hexylthiophene polymerization, Journal of the American Chemical Society, 114(25), 10087, (1992).
    37. Hummelen, J. C., Knight, B. W., LePeq, F., Wudl, F., Yao, J. and Wilkins, C. L., Preparation and Characterization of Fulleroid and Methanofullerene Derivatives, The Journal of Organic Chemistry, 60(3), 532, (1995).
    38. Lin, S.-H., Lan, S., Sun, J.-Y. and Lin, C.-F., Influence of mixed solvent on the morphology of the P3HT:Indene-C60 bisadduct (ICBA) blend film and the performance of inverted polymer solar cells, Organic Electronics, 14(1), 26, (2013).
    39. Xin, H., Subramaniyan, S., Kwon, T.-W., Shoaee, S., Durrant, J. R. and Jenekhe, S. A., Enhanced Open Circuit Voltage and Efficiency of Donor–Acceptor Copolymer Solar Cells by Using Indene-C60 Bisadduct, Chemistry of Materials, 24(11), 1995, (2012).
    40. He, Y., Chen, H.-Y., Hou, J. and Li, Y., Indene−C60 Bisadduct: A New Acceptor for High-Performance Polymer Solar Cells, Journal of the American Chemical Society, 132(4), 1377, (2010).
    41. Lin, Y.-H., Tsai, Y.-T., Wu, C.-C., Tsai, C.-H., Chiang, C.-H., Hsu, H.-F., Lee, J.-J. and Cheng, C.-Y., Comparative study of spectral and morphological properties of blends of P3HT with PCBM and ICBA, Organic Electronics, 13, 2333, (2012).
    42. Wong, K., Yip, H., Luo, Y., Wong, K., Lau, W., Low, K., Chow, H., Gao, Z., Yeung, W. and Chang, C., Blocking reactions between indium-tin oxide and poly (3, 4-ethylene dioxythiophene): poly (styrene sulphonate) with a self-assembly monolayer, Applied Physics Letters, 80(15), 2788, (2002).
    43. Hau, S. K., Yip, H.-L., Baek, N. S., Zou, J., O’Malley, K. and Jen, A. K.-Y., Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer, Applied Physics Letters, 92, 253301, (2008).
    44. Hau, S. K., Yip, H.-L. and Jen, A. K. Y., A Review on the Development of the Inverted Polymer Solar Cell Architecture, Polymer Reviews, 50(4), 474, (2010).
    45. Hau, S. K., Yip, H.-L., Leong, K. and Jen, A. K.-Y., Spraycoating of silver nanoparticle electrodes for inverted polymer solar cells, Organic Electronics, 10(4), 719, (2009).
    46. Kettle, J., Waters, H., Horie, M. and Chang, S. W., Effect of hole transporting layers on the performance of PCPDTBT : PCBM organic solar cells, Journal of Physics D: Applied Physics, 45(12), 125102, (2012).
    47. Chen, L.-M., Xu, Z., Hong, Z. and Yang, Y., Interface investigation and engineering - achieving high performance polymer photovoltaic devices, Journal of Materials Chemistry, 20(13), 2575, (2010).
    48. Steim, R., Kogler, F. R. and Brabec, C. J., Interface materials for organic solar cells, Journal of Materials Chemistry, 20(13), 2499, (2010).
    49. Ma, H., Yip, H.-L., Huang, F. and Jen, A. K. Y., Interface Engineering for Organic Electronics, Advanced Functional Materials, 20(9), 1371, (2010).
    50. Kim, J. Y., Kim, S. H., Lee, H. H., Lee, K., Ma, W., Gong, X. and Heeger, A. J., New Architecture for High‐Efficiency Polymer Photovoltaic Cells Using Solution‐Based Titanium Oxide as an Optical Spacer, Advanced Materials, 18(5), 572, (2006).
    51. Lee, J. M., Kwon, B.-H., Park, H. I., Kim, H., Kim, M. G., Park, J. S., Kim, E. S., Yoo, S., Jeon, D. Y. and Kim, S. O., Exciton Dissociation and Charge-Transport Enhancement in Organic Solar Cells with Quantum-Dot/N-doped CNT Hybrid Nanomaterials, Advanced Materials, 25(14), 2011, (2013).
    52. Cheng, Y.-J., Hsieh, C.-H., He, Y., Hsu, C.-S. and Li, Y., Combination of indene-c60 bis-adduct and cross-linked fullerene interlayer leading to highly efficient inverted polymer solar cells, Journal of the American Chemical Society, 132(49), 17381, (2010).
    53. Kouijzer, S., Esiner, S., Frijters, C. H., Turbiez, M., Wienk, M. M. and Janssen, R. A., Efficient Inverted Tandem Polymer Solar Cells with a Solution‐Processed Recombination Layer, Advanced Energy Materials, 2(8), 945, (2012).
    54. Yip, H.-L., Hau, S. K., Baek, N. S., Ma, H. and Jen, A. K. Y., Polymer Solar Cells That Use Self-Assembled-Monolayer- Modified ZnO/Metals as Cathodes, Advanced Materials, 20(12), 2376, (2008).
    55. Meulenkamp, E. A., Synthesis and Growth of ZnO Nanoparticles, The Journal of Physical Chemistry B, 102(29), 5566, (1998).
    56. Bonasewicz, P., Hirschwald, W. and Neumann, G., Influence of surface processes on electrical, photochemical, and thermodynamical properties of zinc oxide films, Journal of the Electrochemical Society, 133(11), 2270, (1986).
    57. Fujihara, S., Sasaki, C. and Kimura, T., Effects of Li and Mg doping on microstructure and properties of sol-gel ZnO thin films, Journal of the European Ceramic Society, 21(10), 2109, (2001).
    58. Liu, L.-C., Chen, J.-S., Jeng, J.-S. and Chen, W.-Y., Variation of Oxygen Deficiency in Solution-Processed Ultra-Thin Zinc-Tin Oxide Films to Their Transistor Characteristics, ECS Journal of Solid State Science and Technology, 2(4), Q59, (2013).
    59. Wang, F., Graetz, J., Moreno, M. S., Ma, C., Wu, L., Volkov, V. and Zhu, Y., Chemical distribution and bonding of lithium in intercalated graphite: Identification with optimized electron energy loss spectroscopy, ACS Nano, 5(2), 1190, (2011).
    60. Hu, J. and Pan, B., Electronic structures of defects in ZnO: Hybrid density functional studies, The Journal of chemical physics, 129, 154706, (2008).
    61. Djurišić, A., Ng, A. and Chen, X., ZnO nanostructures for optoelectronics: material properties and device applications, Progress in Quantum Electronics, 34(4), 191, (2010).
    62. Kuwabara, T., Tamai, C., Omura, Y., Yamaguchi, T., Taima, T. and Takahashi, K., Effect of UV light irradiation on photovoltaic characteristics of inverted polymer solar cells containing sol–gel zinc oxide electron collection layer, Organic Electronics, 14(2), 649, (2013).
    63. Leever, B. J., Bailey, C. A., Marks, T. J., Hersam, M. C. and Durstock, M. F., In Situ Characterization of Lifetime and Morphology in Operating Bulk Heterojunction Organic Photovoltaic Devices by Impedance Spectroscopy, Advanced Energy Materials, 2(1), 120, (2012).
    64. Guerrero, A., Ripolles-Sanchis, T., Boix, P. P. and Garcia-Belmonte, G., Series resistance in organic bulk-heterojunction solar devices: Modulating carrier transport with fullerene electron traps, Organic Electronics, 13(11), 2326, (2012).
    65. Ripolles-Sanchis, T., Guerrero, A., Bisquert, J. and Garcia-Belmonte, G., Diffusion-Recombination Determines Collected Current and Voltage in Polymer:Fullerene Solar Cells, The Journal of Physical Chemistry C, 116(32), 16925, (2012).
    66. Kim, H., Horwitz, J., Kushto, G., Pique, A., Kafafi, Z., Gilmore, C. and Chrisey, D., Effect of film thickness on the properties of indium tin oxide thin films, Journal of Applied Physics, 88(10), 6021, (2000).
    67. Fujihara, S., Sasaki, C. and Kimura, T., Crystallization behavior and origin of c-axis orientation in sol–gel-derived ZnO: Li thin films on glass substrates, Applied Surface Science, 180(3), 341, (2001).
    68. Oral, A. Y., Bahsi, Z. B. and Aslan, A. H., Microstructure and optical properties of nanocrystalline ZnO and ZnO :(Li or Al) thin films, Applied Surface Science, 253(10), 4593, (2007).

    無法下載圖示 校內:2018-08-23公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE