| 研究生: |
胡哲源 Hu, Che-Yuan |
|---|---|
| 論文名稱: |
藉由一種吲哚類生物鹼:Evodiamine的腫瘤治療機轉,來探討新的抗癌機制 Exploring Novel Mechanisms for Anti-cancer Effects Through Evodiamine: an Indole Alkaloid |
| 指導教授: |
沈延盛
Shan, Yan-Shen 吳昭良 Wu, Chao-Liang 歐弘毅 Ou, Horng-Yih |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 臨床醫學研究所 Institute of Clinical Medicine |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 吳茱萸鹼 、含雙色胺酸功能區氧化還原酶 、磷脂過氧化氫酶 、鐵依賴型死亡 、上皮細胞間質化 、膀胱癌 、肝癌 |
| 外文關鍵詞: | evodiamine, WWOX, GPX4, ferroptosis, EMT, bladder cancer, liver cancer |
| ORCID: | 0000-0001-5151-4552 |
| 相關次數: | 點閱:50 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在臨床治療上,遭遇到高惡性度、對常見治療具抵抗性的癌症,現在已經越來越多見,進一步造成病人癌症的進展,甚或出現轉移。癌症細胞因細胞本身多樣的分子網路,複雜的代謝作用,使得只作用在單一目標或機轉的藥物,容易在後期失去效果。因此,研究潛在具多重目標的藥物、發展新的抑癌機轉,了解是否有其他非典型的調控細胞死亡形式,並最好是高惡性度或是有抗藥性癌症細胞較依賴的死亡方式,都是增加治療選項的好方法。我們藉由探討evodiamine這種具多重藥理作用的吲哚類生物鹼,在癌症細胞中的抑癌效果,來進一步研究是否有可能的、潛在臨床實用性的,未完全被發現或了解的抗癌機制。我們首先在人類和小鼠的肝癌細胞中,發現evodiamine會抑制細胞增殖,且其治療會增加WW domain-containing oxidoreductase (WWOX) 這種抑癌因子的表現。如果將癌細胞中WWOX的表現先予以小分子干擾核糖核酸控制,將會降低evodiamine的抑癌效果。更進一步,我們在人類的膀胱癌細胞中,發現evodiamine具細胞毒殺及細胞週期阻滯的效果。我們發現evodiamine治療使細胞中活性氧類增加,且證實其為脂質過氧化物,而evodiamine亦使保護細胞免於膜脂過氧化的磷脂過氧化氫酶glutathione peroxidase 4 (GPX4)表現下降。脂質過氧化物增加、GPX4下降,是細胞鐵依賴型死亡的特色之一,我們從另一角度,給予鐵螯合劑deferoxamine後再讓細胞接受evodiamine治療,發現細胞內脂質過氧化物產量下降,並有效抑制細胞死亡。若給予的是細胞凋亡抑制劑或是壞死性凋亡抑制劑,均不能讓癌細胞對evodiamine治療產生保護效果,證實evodiamine是造成膀胱癌細胞鐵依賴型死亡。在細胞和動物實驗中,我們也呈現evodiamine可抑制腫瘤成長、轉移能力,及上皮細胞間質化蛋白質的表現。以上發現可更深入了解evodiamine的抑癌能力,並進一步探究可能的抗癌機轉。
In clinical practice, we often encounter highly malignant cancers that resist conventional therapies, leading to disease progression and metastasis. Due to their complicated intracellular molecular networks and metabolic processes, cancer cells can easily develop resistance to drugs that only target single pathways or mechanisms, resulting in decreased efficacy in later stages. Therefore, it is crucial to investigate potential drugs with multiple targets and explore novel anti-cancer mechanisms, including atypical forms of regulated cell death, especially for high-grade or drug-resistant cancer cells, to expand treatment options.
In our study, we aim to investigate the anti-cancer effects of evodiamine, a multi-pharmacological indole alkaloid, and explore its applicability in previously unrecognized or understood anti-cancer mechanisms. Initially, we observe that evodiamine inhibits cell proliferation in both human and mouse liver cancer cells, and its treatment increases the expression of the tumor suppressor WW domain-containing oxidoreductase (WWOX). Furthermore, when we selectively interfere with WWOX expression using small interfering RNA in cancer cells, the anti-cancer effect of evodiamine is diminished. In human bladder cancer cells, we also reveal that evodiamine exhibits cytotoxicity and induces cell cycle arrest. We observe an increase in reactive oxygen species (ROS) upon evodiamine treatment, and the ROS are confirmed to be lipid peroxides. Moreover, evodiamine downregulates the expression of glutathione peroxidase 4 (GPX4), which protects cells from lipid peroxidation. Increased lipid peroxides and decreased GPX4 are characteristic features of ferroptosis. We administer iron chelator deferoxamine before evodiamine treatment, which decreases lipid peroxidation and effectively inhibits cell death. However, when administered apoptosis or necroptosis inhibitors, they do not confer protection against evodiamine treatment, thus confirming that evodiamine induces ferroptosis in bladder cancer cells. Moreover, we demonstrate that evodiamine can inhibit tumor growth, migrative ability, and the expression of epithelial-mesenchymal transition (EMT) proteins in vivo and in vitro. These findings provide a deeper understanding of the anti-cancer capabilities of evodiamine and offer insights into its potential mechanisms of action.
1 Chabner, B. A. & Roberts, T. G., Jr. Timeline: Chemotherapy and the war on cancer. Nat Rev Cancer 5, 65-72, doi:10.1038/nrc1529 (2005).
2 Masui, K. et al. A tale of two approaches: complementary mechanisms of cytotoxic and targeted therapy resistance may inform next-generation cancer treatments. Carcinogenesis 34, 725-738, doi:10.1093/carcin/bgt086 (2013).
3 Schrock, M. S. & Huebner, K. WWOX: a fragile tumor suppressor. Exp Biol Med (Maywood) 240, 296-304, doi:10.1177/1535370214561590 (2015).
4 Ramos, D. et al. Low levels of WWOX protein immunoexpression correlate with tumour grade and a less favourable outcome in patients with urinary bladder tumours. Histopathology 52, 831-839, doi:10.1111/j.1365-2559.2008.03033.x (2008).
5 Bednarek, A. K. et al. WWOX, a novel WW domain-containing protein mapping to human chromosome 16q23.3-24.1, a region frequently affected in breast cancer. Cancer Res 60, 2140-2145 (2000).
6 Khawaled, S. et al. Pleiotropic tumor suppressor functions of WWOX antagonize metastasis. Signal Transduct Target Ther 5, 43, doi:10.1038/s41392-020-0136-8 (2020).
7 Khawaled, S. et al. WWOX Inhibits Metastasis of Triple-Negative Breast Cancer Cells via Modulation of miRNAs. Cancer Res 79, 1784-1798, doi:10.1158/0008-5472.CAN-18-0614 (2019).
8 Bouteille, N. et al. Inhibition of the Wnt/beta-catenin pathway by the WWOX tumor suppressor protein. Oncogene 28, 2569-2580, doi:10.1038/onc.2009.120 (2009).
9 Zhao, Y. et al. WWOX promotes apoptosis and inhibits autophagy in paclitaxel‑treated ovarian carcinoma cells. Mol Med Rep 23, doi:10.3892/mmr.2020.11754 (2021).
10 Schrock, M. S. et al. Wwox-Brca1 interaction: role in DNA repair pathway choice. Oncogene 36, 2215-2227, doi:10.1038/onc.2016.389 (2017).
11 Dixon, S. J. Ferroptosis: bug or feature? Immunol Rev 277, 150-157, doi:10.1111/imr.12533 (2017).
12 Yang, W. S. & Stockwell, B. R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol 15, 234-245, doi:10.1016/j.chembiol.2008.02.010 (2008).
13 Brigelius-Flohe, R. & Maiorino, M. Glutathione peroxidases. Biochim Biophys Acta 1830, 3289-3303, doi:10.1016/j.bbagen.2012.11.020 (2013).
14 Hirschhorn, T. & Stockwell, B. R. The development of the concept of ferroptosis. Free Radic Biol Med 133, 130-143, doi:10.1016/j.freeradbiomed.2018.09.043 (2019).
15 Chen, L. et al. Erastin sensitizes glioblastoma cells to temozolomide by restraining xCT and cystathionine-gamma-lyase function. Oncol Rep 33, 1465-1474, doi:10.3892/or.2015.3712 (2015).
16 Proneth, B. & Conrad, M. Ferroptosis and necroinflammation, a yet poorly explored link. Cell Death Differ 26, 14-24, doi:10.1038/s41418-018-0173-9 (2019).
17 Hangauer, M. J. et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature 551, 247-250, doi:10.1038/nature24297 (2017).
18 Newman, D. J. & Cragg, G. M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J Nat Prod 83, 770-803, doi:10.1021/acs.jnatprod.9b01285 (2020).
19 Patridge, E., Gareiss, P., Kinch, M. S. & Hoyer, D. An analysis of FDA-approved drugs: natural products and their derivatives. Drug Discov Today 21, 204-207, doi:10.1016/j.drudis.2015.01.009 (2016).
20 Qin, R. et al. Naturally derived indole alkaloids targeting regulated cell death (RCD) for cancer therapy: from molecular mechanisms to potential therapeutic targets. J Hematol Oncol 15, 133, doi:10.1186/s13045-022-01350-z (2022).
21 Soria, J. C. et al. Osimertinib in Untreated EGFR-Mutated Advanced Non-Small-Cell Lung Cancer. N Engl J Med 378, 113-125, doi:10.1056/NEJMoa1713137 (2018).
22 Rizzo, M. & Porta, C. Sunitinib in the treatment of renal cell carcinoma: an update on recent evidence. Ther Adv Urol 9, 195-207, doi:10.1177/1756287217713902 (2017).
23 Persad, R. Leuprorelin acetate in prostate cancer: a European update. International journal of clinical practice 56, 389-396 (2002).
24 Itoh, T. et al. Reduced scytonemin isolated from Nostoc commune induces autophagic cell death in human T-lymphoid cell line Jurkat cells. Food Chem Toxicol 60, 76-82, doi:10.1016/j.fct.2013.07.016 (2013).
25 Meng, N. et al. Autophagy represses fascaplysin-induced apoptosis and angiogenesis inhibition via ROS and p8 in vascular endothelia cells. Biomed Pharmacother 114, 108866, doi:10.1016/j.biopha.2019.108866 (2019).
26 Gong, X., Zhou, X., Cai, Z., Zhang, J. & Zhou, W. [Studies on chemical constituents of Evodia rutaecarpa]. Zhongguo Zhong Yao Za Zhi 34, 177-179 (2009).
27 Huang, D. M. et al. Induction of mitotic arrest and apoptosis in human prostate cancer pc-3 cells by evodiamine. J Urol 173, 256-261, doi:10.1097/01.ju.0000141587.72429.e3 (2005).
28 Jiang, Z. B. et al. Evodiamine suppresses non-small cell lung cancer by elevating CD8(+) T cells and downregulating the MUC1-C/PD-L1 axis. J Exp Clin Cancer Res 39, 249, doi:10.1186/s13046-020-01741-5 (2020).
29 Sun, C. et al. Evodiamine inhibits the proliferation of leukemia cell line K562 by regulating peroxisome proliferators-activated receptor gamma (PPARgamma) pathway. J Recept Signal Transduct Res 36, 422-428, doi:10.3109/10799893.2015.1122040 (2016).
30 Xu, S. et al. Discovery of Novel Polycyclic Heterocyclic Derivatives from Evodiamine for the Potential Treatment of Triple-Negative Breast Cancer. J Med Chem 64, 17346-17365, doi:10.1021/acs.jmedchem.1c01411 (2021).
31 Kan, S. F., Huang, W. J., Lin, L. C. & Wang, P. S. Inhibitory effects of evodiamine on the growth of human prostate cancer cell line LNCaP. Int J Cancer 110, 641-651, doi:10.1002/ijc.20138 (2004).
32 Yu, H., Jin, H., Gong, W., Wang, Z. & Liang, H. Pharmacological actions of multi-target-directed evodiamine. Molecules 18, 1826-1843, doi:10.3390/molecules18021826 (2013).
33 Mittal, S. & El-Serag, H. B. Epidemiology of hepatocellular carcinoma: consider the population. J Clin Gastroenterol 47 Suppl, S2-6, doi:10.1097/MCG.0b013e3182872f29 (2013).
34 Li, Y. P., Wu, C. C., Chen, W. T., Huang, Y. C. & Chai, C. Y. The expression and significance of WWOX and beta-catenin in hepatocellular carcinoma. APMIS 121, 120-126, doi:10.1111/j.1600-0463.2012.02947.x (2013).
35 Zhou, C. et al. Low expression of WW domain-containing oxidoreductase associates with hepatocellular carcinoma aggressiveness and recurrence after curative resection. Cancer Med 7, 3031-3043, doi:10.1002/cam4.1591 (2018).
36 Khalaf, A. M. et al. Role of Wnt/beta-catenin signaling in hepatocellular carcinoma, pathogenesis, and clinical significance. J Hepatocell Carcinoma 5, 61-73, doi:10.2147/JHC.S156701 (2018).
37 Yang, S. et al. Evodiamine Exerts Anticancer Effects Against 143B and MG63 Cells Through the Wnt/beta-Catenin Signaling Pathway. Cancer Manag Res 12, 2875-2888, doi:10.2147/CMAR.S238093 (2020).
38 Kim, H. et al. Evodiamine Eliminates Colon Cancer Stem Cells via Suppressing Notch and Wnt Signaling. Molecules 24, doi:10.3390/molecules24244520 (2019).
39 Wen, Z. et al. Evodiamine, a novel inhibitor of the Wnt pathway, inhibits the self-renewal of gastric cancer stem cells. Int J Mol Med 36, 1657-1663, doi:10.3892/ijmm.2015.2383 (2015).
40 Shi, L. et al. Evodiamine exerts anti-tumor effects against hepatocellular carcinoma through inhibiting beta-catenin-mediated angiogenesis. Tumour Biol 37, 12791-12803, doi:10.1007/s13277-016-5251-3 (2016).
41 Li, Y. L. et al. Evodiamine induces apoptosis and promotes hepatocellular carcinoma cell death induced by vorinostat via downregulating HIF-1alpha under hypoxia. Biochem Biophys Res Commun 498, 481-486, doi:10.1016/j.bbrc.2018.03.004 (2018).
42 Zhao, S. et al. Evodiamine inhibits proliferation and promotes apoptosis of hepatocellular carcinoma cells via the Hippo-Yes-Associated Protein signaling pathway. Life Sci 251, 117424, doi:10.1016/j.lfs.2020.117424 (2020).
43 Wang, L. et al. ATF3 promotes erastin-induced ferroptosis by suppressing system Xc(). Cell Death Differ 27, 662-675, doi:10.1038/s41418-019-0380-z (2020).
44 Lu, S. et al. ATF3 contributes to brucine-triggered glioma cell ferroptosis via promotion of hydrogen peroxide and iron. Acta Pharmacol Sin 42, 1690-1702, doi:10.1038/s41401-021-00700-w (2021).
45 Ye, Y. et al. 3,3'-Diindolylmethane induces ferroptosis by BAP1-IP3R axis in BGC-823 gastric cancer cells. Anti-cancer Drugs 33, 362-370, doi:10.1097/CAD.0000000000001270 (2022).
46 Liu, N., Li, Y., Chen, G. & Ge, K. Evodiamine induces reactive oxygen species-dependent apoptosis and necroptosis in human melanoma A-375 cells. Oncol Lett 20, 121, doi:10.3892/ol.2020.11983 (2020).
47 Yang, J., Wu, L. J., Tashiro, S., Onodera, S. & Ikejima, T. Nitric oxide activated by p38 and NF-kappaB facilitates apoptosis and cell cycle arrest under oxidative stress in evodiamine-treated human melanoma A375-S2 cells. Free Radic Res 42, 1-11, doi:10.1080/10715760701762407 (2008).
48 Yang, J., Wu, L. J., Tashino, S., Onodera, S. & Ikejima, T. Protein tyrosine kinase pathway-derived ROS/NO productions contribute to G2/M cell cycle arrest in evodiamine-treated human cervix carcinoma HeLa cells. Free Radic Res 44, 792-802, doi:10.3109/10715762.2010.481302 (2010).
49 Zhou, P. et al. Evodiamine inhibits migration and invasion by Sirt1-mediated post-translational modulations in colorectal cancer. Anti-cancer Drugs 30, 611-617, doi:10.1097/CAD.0000000000000760 (2019).
50 Yang, W. et al. Evaluation of the Cardiotoxicity of Evodiamine In Vitro and In Vivo. Molecules 22, doi:10.3390/molecules22060943 (2017).
51 Zeng, F. et al. Ferroptosis: A new therapeutic target for bladder cancer. Front Pharmacol 13, 1043283, doi:10.3389/fphar.2022.1043283 (2022).
52 Xia, Q. D. et al. Ferroptosis Patterns and Tumor Microenvironment Infiltration Characterization in Bladder Cancer. Frontiers in cell and developmental biology 10, 832892, doi:10.3389/fcell.2022.832892 (2022).
53 Zhao, S. et al. Roles of ferroptosis in urologic malignancies. Cancer Cell Int 21, 676, doi:10.1186/s12935-021-02264-5 (2021).
54 Tang, B. et al. Integrative analysis of the molecular mechanisms, immunological features and immunotherapy response of ferroptosis regulators across 33 cancer types. Int J Biol Sci 18, 180-198, doi:10.7150/ijbs.64654 (2022).
55 Pearce, L. V. et al. Evodiamine functions as an agonist for the vanilloid receptor TRPV1. Org Biomol Chem 2, 2281-2286, doi:10.1039/B404506H (2004).
56 Peng, J. & Li, Y. J. The vanilloid receptor TRPV1: role in cardiovascular and gastrointestinal protection. Eur J Pharmacol 627, 1-7, doi:10.1016/j.ejphar.2009.10.053 (2010).
57 Matsuda, H., Wu, J. X., Tanaka, T., Iinuma, M. & Kubo, M. Antinociceptive activities of 70% methanol extract of evodiae fructus (fruit of Evodia rutaecarpa var. bodinieri) and its alkaloidal components. Biol Pharm Bull 20, 243-248, doi:10.1248/bpb.20.243 (1997).
58 Caterina, M. J. & Julius, D. The vanilloid receptor: a molecular gateway to the pain pathway. Annu Rev Neurosci 24, 487-517, doi:10.1146/annurev.neuro.24.1.487 (2001).
59 Wei, J. et al. Essential role of transient receptor potential vanilloid type 1 in evodiamine-mediated protection against atherosclerosis. Acta Physiol (Oxf) 207, 299-307, doi:10.1111/apha.12005 (2013).
60 Wanner, S. P. et al. Aging reverses the role of the transient receptor potential vanilloid-1 channel in systemic inflammation from anti-inflammatory to proinflammatory. Cell Cycle 11, 343-349, doi:10.4161/cc.11.2.18772 (2012).
61 Wang, Z. et al. Binding mode pediction of evodiamine within vanilloid receptor TRPV1. Int J Mol Sci 13, 8958-8969, doi:10.3390/ijms13078958 (2012).
62 Bujak, J. K., Kosmala, D., Szopa, I. M., Majchrzak, K. & Bednarczyk, P. Inflammation, Cancer and Immunity-Implication of TRPV1 Channel. Front Oncol 9, 1087, doi:10.3389/fonc.2019.01087 (2019).
63 Li, L. et al. The Impact of TRPV1 on Cancer Pathogenesis and Therapy: A Systematic Review. Int J Biol Sci 17, 2034-2049, doi:10.7150/ijbs.59918 (2021).
64 Giliarov, D. A. & Shkundina, I. S. [DNA-topoisomerases and their functions in cell]. Mol Biol (Mosk) 46, 52-63 (2012).
65 Luo, C. et al. Research progress on evodiamine, a bioactive alkaloid of Evodiae fructus: Focus on its anti-cancer activity and bioavailability (Review). Exp Ther Med 22, 1327, doi:10.3892/etm.2021.10762 (2021).
66 O'Donnell, E. F. et al. The aryl hydrocarbon receptor mediates leflunomide-induced growth inhibition of melanoma cells. PLoS One 7, e40926, doi:10.1371/journal.pone.0040926 (2012).
67 Mezrich, J. D. et al. SU5416, a VEGF receptor inhibitor and ligand of the AHR, represents a new alternative for immunomodulation. PLoS One 7, e44547, doi:10.1371/journal.pone.0044547 (2012).
68 Atkin, N. D., Raimer, H. M. & Wang, Y. H. Broken by the Cut: A Journey into the Role of Topoisomerase II in DNA Fragility. Genes (Basel) 10, doi:10.3390/genes10100791 (2019).
69 Arlt, M. F. & Glover, T. W. Inhibition of topoisomerase I prevents chromosome breakage at common fragile sites. DNA Repair (Amst) 9, 678-689, doi:10.1016/j.dnarep.2010.03.005 (2010).
70 Aqeilan, R. I., Abu-Remaileh, M. & Abu-Odeh, M. The common fragile site FRA16D gene product WWOX: roles in tumor suppression and genomic stability. Cell Mol Life Sci 71, 4589-4599, doi:10.1007/s00018-014-1724-y (2014).
71 Hazan, I., Hofmann, T. G. & Aqeilan, R. I. Tumor Suppressor Genes within Common Fragile Sites Are Active Players in the DNA Damage Response. PLoS Genet 12, e1006436, doi:10.1371/journal.pgen.1006436 (2016).
72 Ludes-Meyers, J. H., Bednarek, A. K., Popescu, N. C., Bedford, M. & Aldaz, C. M. WWOX, the common chromosomal fragile site, FRA16D, cancer gene. Cytogenet Genome Res 100, 101-110, doi:10.1159/000072844 (2003).
73 Wang, Y. et al. Wnt/beta-catenin signaling confers ferroptosis resistance by targeting GPX4 in gastric cancer. Cell Death Differ 29, 2190-2202, doi:10.1038/s41418-022-01008-w (2022).
74 Cao, L. & Mu, W. Necrostatin-1 and necroptosis inhibition: Pathophysiology and therapeutic implications. Pharmacol Res 163, 105297, doi:10.1016/j.phrs.2020.105297 (2021).
75 Lin, L., Ren, L., Wen, L., Wang, Y. & Qi, J. Effect of evodiamine on the proliferation and apoptosis of A549 human lung cancer cells. Mol Med Rep 14, 2832-2838, doi:10.3892/mmr.2016.5575 (2016).
76 Liu, H., Huang, C., Wu, L. & Wen, B. Effect of evodiamine and berberine on miR-429 as an oncogene in human colorectal cancer. OncoTargets and therapy 9, 4121-4127, doi:10.2147/OTT.S104729 (2016).
77 Hu, C. et al. Evodiamine sensitizes BGC-823 gastric cancer cells to radiotherapy in vitro and in vivo. Mol Med Rep 14, 413-419, doi:10.3892/mmr.2016.5237 (2016).
78 Chen, T. C., Chien, C. C., Wu, M. S. & Chen, Y. C. Evodiamine from Evodia rutaecarpa induces apoptosis via activation of JNK and PERK in human ovarian cancer cells. Phytomedicine 23, 68-78, doi:10.1016/j.phymed.2015.12.003 (2016).
79 Zhong, Z. F., Tan, W., Wang, S. P., Qiang, W. A. & Wang, Y. T. Anti-proliferative activity and cell cycle arrest induced by evodiamine on paclitaxel-sensitive and -resistant human ovarian cancer cells. Sci Rep 5, 16415, doi:10.1038/srep16415 (2015).
80 Yang, L. et al. Growth inhibition and induction of apoptosis in SGC‑7901 human gastric cancer cells by evodiamine. Mol Med Rep 9, 1147-1152, doi:10.3892/mmr.2014.1924 (2014).
81 Viswanathan, V. S. et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 547, 453-457, doi:10.1038/nature23007 (2017).
82 Eaton, J. K. et al. Selective covalent targeting of GPX4 using masked nitrile-oxide electrophiles. Nat Chem Biol 16, 497-506, doi:10.1038/s41589-020-0501-5 (2020).
83 Wen, B., Roongta, V., Liu, L. & Moore, D. J. Metabolic activation of the indoloquinazoline alkaloids evodiamine and rutaecarpine by human liver microsomes: dehydrogenation and inactivation of cytochrome P450 3A4. Drug Metab Dispos 42, 1044-1054, doi:10.1124/dmd.114.057414 (2014).
84 Tan, Q. et al. Design and evaluation of a novel evodiamine-phospholipid complex for improved oral bioavailability. AAPS PharmSciTech 13, 534-547, doi:10.1208/s12249-012-9772-9 (2012).
85 Xu, S. et al. Pharmacokinetic comparisons of rutaecarpine and evodiamine after oral administration of Wu-Chu-Yu extracts with different purities to rats. J Ethnopharmacol 139, 395-400, doi:10.1016/j.jep.2011.11.023 (2012).