簡易檢索 / 詳目顯示

研究生: 陳泓如
Chen, Hong-Ru
論文名稱: 酪氨酸激酶接受器藉由抑制Src活化所藉導之上皮細胞鈣黏附因子內吞促進上皮細胞鈣黏附因子之穩定性
DDR1 promotes E-cadherin stability via inhibition of Src activation-mediated E-cadherin endocytosis
指導教授: 湯銘哲
Tang, Ming-Jer
學位類別: 碩士
Master
系所名稱: 醫學院 - 生理學研究所
Department of Physiology
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 73
中文關鍵詞: 酪氨酸激酶接受器上皮細胞鈣黏附因子內吞作用Src
外文關鍵詞: discoidin domain receptor 1 (DDR1), E-cadherin, endocytosis, Src
相關次數: 點閱:84下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 酪氨酸激酶接受器(discoidin domain receptor 1-DDR1)為一具酪胺激酶活性之膠原蛋白受體,主要表現於上皮細胞中。本實驗室近來的研究證實活化的酪氨酸激酶接受器藉由抑制Cdc42藉導的內吞作用(endocytosis),促進上皮細胞鈣黏附因子(E-cadherin)之穩定性。然而,受酪氨酸激酶接受器抑制之上皮細胞鈣黏附因子的內吞作用,其訊息傳遞機制目前仍不清楚。以往的研究表明上皮細胞鈣黏附因子,α-catenin及肌動蛋白(actin)所形成的複合物能增加上皮細胞鈣黏附因子在細胞膜上之穩定性並減少其流失率(turnover rate)。在肝細胞生長因子(hepatocyte growth factor)刺激下,活化的Cdc42透過Src誘導上皮細胞鈣黏附因子之酪氨酸磷酸化,然後造成上皮細胞鈣黏附因子,α-catenin及肌動蛋白所形成的複合物之分離,隨後導致上皮細胞鈣黏附因子透過網格蛋白(clathrin)依賴的途徑進行內吞作用。因此,我們假設酪氨酸激酶接受器透過抑制Src的活性及網格蛋白依賴的內吞途徑,穩定上皮細胞鈣黏附因子,α-catenin及肌動蛋白所形成的複合物。首先我們想了解是否knockdown 酪氨酸激酶接受器會促進上皮細胞鈣黏附因子藉由網格蛋白進行內吞作用。免疫沉澱的結果顯示knockdown DDR1 (Sh-DDR1) 促進了上皮細胞鈣黏附因子和網格蛋白間的交互作用,並且網格蛋白依賴之內吞作用抑制劑dynasore可抑制上皮細胞鈣黏附因子的內吞作用,其呈現時間與劑量依賴的趨勢,顯示受酪氨酸激酶接受器抑制之上皮細胞鈣黏附因子內吞作用是透過網格蛋白依賴之途徑。為了證明Src的活化是關鍵的中繼者,我們對Src酪氨酸418在Sh - DDR1細胞中的磷酸化水平進行評估。其結果顯示,knockdown酪氨酸激酶接受器增加細胞與細胞交界處的Src酪氨酸418磷酸化。此外,Src抑制劑PP2可抑制knockdown 酪氨酸激酶接受器所引起的上皮細胞鈣黏附因子內吞作用。為了更進一步研究knockdown酪氨酸激酶接受器如何增加Src之活性,我們利用阻斷抗體4B4來阻斷整合素β1之信號。4B4降低Src活性並且使Sh-DDR1細胞內的上皮細胞鈣黏附因子再度位在細胞交界處,顯示knockdown酪氨酸激酶接受器藉由抑制整合素β1之信號增加Src之活性。光轉化及溶解度實驗顯示抑制Src的活性可增加上皮細胞鈣黏附因子及上皮細胞鈣黏附因子,α-catenin及肌動蛋白所形成的複合物之穩定度。免疫螢光染色的結果也顯示抑制整合素β1-Src信號可減少Sh-DDR1細胞中的應力纖維。整合這些結果,我們發現,knockdown酪氨酸激酶接受器透過整合素β1增強的Src磷酸化,及對肌動蛋白骨架的修改,減少位於細胞交界處的上皮細胞鈣黏附因子。

    Discoidin domain receptor 1 (DDR1), a receptor tyrosine kinase of collagen, is mainly expressed in epithelial cells. Our recent works have shown that activation of DDR1 results in the stabilization of E-cadherin via inhibition of Cdc42-mediated endocytosis. However, the signaling mechanism in DDR1-inhibited E-cadherin endocytosis remains unclear. Previous studies have shown that E-cadherin-catenin-actin complexes increases E-cadherin membrane stability and reduces its turnover rate. Upon HGF treatment, active Cdc42 induces E-cadherin phosphorylation via Src-dependent pathway, which in turn causes the disruption of E-cadherin-catenin-actin complex and endocytosis of E-cadherin via clathrin-dependent pathway. We then proposed that DDR1 stabilized E-cadherin-catenin-actin complex through inactivation of Src and subsequent clathrin-dependent endocytosis pathway. To test this hypothesis, we first aim to investigate whether knockdown of DDR1 (Sh-DDR1) would result in the increase of E-cadherin endocytosis through clathrin-dependent pathway. We found that Sh-DDR1 decreased junctional localization and increased endocytosis of E-cadherin without affecting protein abundance of E-cadherin. The immunoprecipitation result showed that Sh-DDR1 increased the physical interactions between E-cadherin and clathrin and the treatment of clathrin-dependent endocytosis inhibitor, dynasore, suppressed Sh-DDR1-induced E-cadherin endocytosis in a time- and dose-dependent manner, indicating that DDR1-inhibited E-cadherin endocytosis was mediated through clathrin-dependent pathway. To confirm that Src activation is the key mediator, the phosphorylation level of Src tyrosine 418 in Sh-DDR1 cells was assessed. The result showed that knockdown of DDR1 increased the phosphorylation level of Src tyrosine 418 in cell-cell junctions. Moreover, Src inhibitor, PP2, inhibited Sh-DDR1-induced E-cadherin endocytosis. To further investigate how knockdown of DDR1 increases Src activity, we blocked integrin β1 signal by blocking antibody, 4B4. 4B4 treatment decreased Src activity and rescued E-cadherin junctional localization in Sh-DDR1 cells, which indicates knockdown of DDR1 increases Src activity via integrin β1 signaling. The results of photoconversion and triton solubility showed inhibition of Src activity rescued E-cadherin membrane stability and the stability of E-cadherin-catenin-actin complex. The immunofluorescence study also showed that inhibition of integrin β1-Src signaling decreased stress fibers in Sh-DDR1 cells. Taken together, we showed that knockdown of DDR1 decreased the membrane localization of E-cadherin via clathrin-dependent endocytosis pathway, which is mediated by integrin β1-augmented Src phosphorylation and modification of actin cytoskeleton.

    口試合格證明 ----------------------------------------------------------------------------------------1 Abstract ------------------------------------------------------------------------------------------------2 中文摘要 ----------------------------------------------------------------------------------------------4 誌謝 ----------------------------------------------------------------------------------------------------6 Content -------------------------------------------------------------------------------------------------8 Figure content ----------------------------------------------------------------------------------------9 Introduction -----------------------------------------------------------------------------------------10 Materials and methods ----------------------------------------------------------------------------19 Results ------------------------------------------------------------------------------------------------24 Discussion --------------------------------------------------------------------------------------------37 References --------------------------------------------------------------------------------------------43 Figures ------------------------------------------------------------------------------------------------51 作者簡歷 ---------------------------------------------------------------------------------------------73

    1. Arancibia-Cárcamo IL, Fairfax BP, Moss SJ, Kittler JT (2006) The Dynamic Synapse: Molecular Methods in Ionotropic Receptor Biology. CRC Press, p91-119
    2. Avizienyte E, Wyke AW, Jones RJ, McLean GW, Westhoff MA, Brunton VG, Frame MC (2002) Src-induced de-regulation of E-cadherin in colon cancer cells requires integrin signaling. Nat Cell Biol 4: 632-638.
    3. Avizienyte E, Fincham VJ, Brunton VG, Frame MC (2003) Src SH3/2 domain-mediated peripheral accumulation of Src and phospho-myosin is linked to deregulation of E-cadherin and the epithelial-mesenchymal transition. Mol Biol Cell 15: 2794-2803.
    4. Avizienyte E and Frame MC (2005) Src and FAK signaling controls adhesion fate and the epithelial-to-mesenchymal transition. Curr Opin Cell Biol 17: 542-547
    5. Batlle E, Sancho E, Francí C, Domínguez D, Monfar M, Baulida J, García De Herreros A (2000) The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2: 84-89.
    6. Baum B, Settleman J, Quinlan MP (2008) Transitions between epithelial and mesenchymal states in development and disease. Semin Cell Dev Biol 19: 294-308.
    7. Baum B and Georgiou M (2011) Dynamics of adherens junctions in epithelial establishment, maintenance, and remodeling. J Cell Biol 6: 907-917.
    8. Bershadsky A (2004) Magic touch: how does cell–cell adhesion trigger actin assembly? Trends Cell Biol 14: 589-593.
    9. Berx G, Cleton-Jansen AM, Nollet F, de Leeuw WJ, van de Vijver M, Cornelisse C, van Roy F (1995) E-cadherin is a tumour/invasion suppressor gene mutated in human lobular breast cancers. EMBO J 14: 6107-6115.
    10. Birchmeier W, Behrens J (2003) Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochim Biophys Acta 1198: 11-26.
    11. Cavallaro U, Christofori G (2004) Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer 4:118-132.
    12. Cavey M, Rauzi M, Lenne PF, Lecuit T (2008) A two-tiered mechanism for stabilization and immobilization of E-cadherin. Nature 453:751-756.
    13. Christofori G, Semb H (1999) The role of the cell-adhesion molecule E-cadherin as a tumour-suppressor gene. Trends Biochem Sci 24: 73-76.
    14. de Beco S, Gueudry C, Amblard F, Coscoy S (2009) Endocytosis is required for E-cadherin redistribution at mature adherens junctions. Proc Natl Acad Sci U S A. 106: 7010-7015.
    15. Delanoë-Ayari H, Al Kurdi R, Vallade M, Gulino-Debrac D, Riveline D (2004) Membrane and acto-myosin tension promote clustering of adhesion proteins. Proc Natl Acad Sci USA 101: 2229-2234.
    16. Eswaramoorthy R, Wang CK, Chen WC, Tang MJ, Ho ML, Hwang CC, Wang HM, Wang CZ (2010) DDR1 regulates the stabilization of cell surface E-cadherin and E-cadherin-mediated cell aggregation. J Cell Physiol 224: 387-397.
    17. Fujita Y, Krause G, Scheffner M, Zechner D, Leddy HE, Behrens J, Sommer T, Birchmeier W (2002) Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nat Cell Biol 4: 222-231.
    18. Georgiou M, Marinari E, Burden J, Baum B (2008) Cdc42, Par6, and aPKC regulate Arp2/3-mediated endocytosis to control local adherens junction stability. Curr Biol 18:1631-1638.
    19. Greenburg G and Hay ED (1982) Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells. J Cell Biol 95: 333-339.
    20. Gumbiner B, Stevenson B and Grimaldi A (1988) The role of the cell adhesion molecule uvomorulin in the formation and maintenance of the epithelial junctional complex. J Cell Biol 107: 1575-1587.
    21. Gumbiner BM (2005) Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol 6:622-634.
    22. Harris TJC and Tepass U (2010) Adherens junctions: from molecules to morphogenesis. Nat Rev Mol Cell Biol 11: 502-514.
    23. Hay ED (1995) An overview of epithelio-mesenchymal transformation. Acta Anat (Basel) 154: 8-20.
    24. Hansen CG and Nichols BJ (2009) Molecular mechanisms of clathrin-independent endocytosis. J Cell Sci 122: 1713-1721.
    25. Henley JR, Cao H, McNiven MA (1999) Participation of dynamin in the biogenesis of cytoplasmic vesicles. FACEB 13: S243-S347.
    26. Hidalgo-Carcedo C, Hooper S, Chaudhry SI, Williamson P, Harrington K, Leitinger B, Sahai E (2011) Collective cell migration requires suppression of actomyosin at cell-cell contacts mediated by DDR1 and the cell polarity regulators Par3 and Par6. Nat Cell Biol. 13:49-58.
    27. Hill E, van der Kaay J, Downes P, Smythe E (2001) The role of dynamin and its binding partners in coated pit invagination and scission. J Cell Biol 152: 309-323.
    28. Hoschuetzky H, Aberle H, Kemler R (1994) Beta-catenin mediates the interaction of the cadherin-catenin complex with epidermal growth factor receptor. J Cell Biol 127:1375-1380.
    29. Huber AH, Weis, WI (2001) The structure of the β-catenin/E-cadherin complex and the molecular basis of diverse ligand recongnition by β-catenin. Cell 105:391-402.
    30. Ishiyama N, Lee SH, Liu S, Li GY, Smith MJ, Reichardt LF, Ikura M (2010) Dynamic and static interactions between p120 catenin and E-cadherin regulate the stabiligy of cell-cell adhesion. Cell 141:117-128.
    31. Ivanov AI, Nusrat A, Parkos CA (2004) Endocytosis of epithelial apical junctional proteins by a clathrin-mediated pathway into a unique storage compartment. Mol Biol Cell 15: 176-188.
    32. Izumi G, Sakisaka T, Baha T, Tanaka S, Morimoto K, Takai Y (2004) Endocytosis of E-cadherin regulated by Rac and Cdc42 small G proteins through IAGAP1 and actin filaments. J Cell Biol 166:237-247.
    33. Jones NP, Peak J, Brader S, Eccles SA, Katan M (2005) PLCgamma1 is essential for early events in integrin signaling required for cell motility. J Cell Sci 118: 2695-2706.
    34. Kalluri R, Neilson EG (2003) Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 112:1776-1784.
    35. Kamei T, Matozaki T, Sakisaka T, Kodama A, Yokoyama S, Peng YF, Nakano K, Takaishi K, Takei Y (1999) Coendocytosis of cadherin and c-Met coupled to disruption of cell-cell adhesion in MDCK cells-regulation by Rho, Rac and Rab small G proteins. Oncogene 18:6776-6784.
    36. Kim KK, Kuglar MC, Wolters PJ, Robillard L, Galvez MG, Brumwell AN, Sheppard D, Chapman HA (2006) Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc Natl Acad Sci U S A. 103: 13180-13185.
    37. le Duc Q, Shi Q, Blonk I, Sonnenberg A, Wang N, Leckband D, de Rooij J (2010) Vinculin potentiates E-cadherin mechanosensing and is recruited to actin-anchored sites within adherens junctions in a myosin II-dependent manner. J Cell Biol 189: 1107-1115.
    38. Liu Y (2004) Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol 15: 1-12.
    39. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265-275.
    40. Macia E, Ehrlich M, Massol R, Boucrot E, Brunner C, Kirchhausen T (2006) Dynasore, a Cell-Permeable Inhibitor of Dynamin. Dev Cell 10: 839-850
    41. Miyashita Y, Ozawa M (2007) A dileucine motif in its cytoplasmic domain directs beta-catenin-uncoupled E-cadherin to the lysosome. J Cell Sci 120:4395-4406
    42. Nelson WJ (2003) Adaptation of core mechanisms to generate cell polarity. Nature 422:766-774.
    43. Nishioka R, Itoh S, Gui T, Gai Z, Oikawa K, Kawai M, Tani M, Yamaue H, Muragaki Y (2010) SNAIL induces epithelial-to-mesenchymal transition in a human pancreatic cancer cell line (BxPC3) and promotes distant metastasis and invasiveness in vivo. Exp Mol Pathol 89: 149-157.
    44. Peng ZY and Cartwright CA (1995) Regulation of the Src tyrosine kinase and Syp tyrosine phosphatase by their cellular association. Oncogene 11, 1955-1962.
    45. Peng X, Cuff LE, Lawton CD, DeMali KA (2010) Vinculin regulates cell-surface E-cadherin expression by binding to beta-catenin. J Cell Sci 123: 567-577
    46. Pérez-Moreno MA, Locascio A, Rodrigo I, Dhondt G, Portillo F, Nieto MA, Cano A (2001) A new role for E12/E47 in the repression of E-cadherin expression and epithelial-mesenchymal transitions. J Biol Chem 276: 27424-27431.
    47. Piedra J, Martinez D, Castano J, Miravet S, Dunach M, de Herreros AG (2001) Regulation of β-catenin structure and activity by tyrosine phosphorylation. J Biol Chem 276:20436-20443.
    48. Piedra J, Miravet S, Castano J, Palmer HG, Heisterkamp N, Garcia de Herreros AG, Dunach M (2003) p120 catenin-associated Fer and Fyn tyrosine kinases regulate β-catenin Tyr-142 phosphorylation and β-catenin-α-catenin interaction. Mol Cell Biol 23:2287-2297.
    49. Pilot F, Philippe JM, Lemmers C, Lecuit T (2006) Spatial control of actin organization at adherens junctions by a synaptotagmin-like protein Btsz. Nature 442: 580-584.
    50. Praefcke GJ, McMahon HT (2004) The dynamin superfamily: universal membrane tubulation and fission molecules? Nat Rev Mol Cell Biol 5: 133-147.
    51. Rhee J, Lilien J, Balsamo J (2001) Essential tyrosine residues for interaction of the non-receptor protein-tyrosine phosphatase PTP1B with N-cadherin. J Biol Chem 276:6640-6644.
    52. Risinger JI, Berchuck A, Kohler MF, Boyd J (1994) Mutations of the E-cadherin gene in human gynecologic cancers. Nat Genet 7: 98-102.
    53. Schmid SL (1997) Clathrin-coated vesicle formation and protein sorting: an integrated process. Annu Rev Biochem 66: 511-548.
    54. Shen Y, Hirsch DS, Sasiela CA, Wu WJ (2008) Cdc42 regulates E-cadherin ubiquitination and degradation through an epidermal growth factor receptor to Src-mediated pathway. J Biol Chem 283:5127-5137.
    55. Smythe E (1996) Endocytosis. Subcell Biochem 27: 51-92
    56. Taguchi K, Ishiuchi T, and Takeichi M (2011) Mechanosensitive EPLIN-dependent remodeling of adherens junctions regulates epithelial reshaping. J Cell Biol 194: 643–656.
    57. Takaichi M (1993) Cadherins in cancer: implications for invasion and metastasis. Curr Opin Cell Biol 5: 806-811.
    58. Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2: 442-454.
    59. Thompson HM, McNiven MA (2006) Discovery of a new 'dynasore' Nat Chem Biol 2: 355-356
    60. Troyanovsky RB, Laur O, Troyanovsky SM (2007) Stable and unstable cadherin dimers: mechanisms of formation and roles in cell adhesion. Mol Biol Cell 18: 4343-4352.
    61. Turashvili G, Bouchal J, Baumforth K, Wei W, Dziechciarkova M, Ehrmann J, Klein J, Fridman E, Skarda J, Sorvnal J, Hajduch M, Murray P, Kolar Z (2007) Novel markers for differentiation of lobular and ductal invasive breast carcinomas by laser microdissection and microassay analysis. BMC Cancer 7:55-75.
    62. Umbas R, Isaacs WB, Bringuier PP, Schaafsma HE, Karthaus HF, Oosterhof GO, Debruyne FM, Schalken JA (1994) Decreased E-cadherin expression is associated with poor prognosis with prostate cancer. Cancer Res 54:3929-3933.
    63. van der Bliek AM, Meyerowitz EM (1991) Dynamin-like protein encoded by the Drosophila shibire gene associated with vesicular traffic. Nature 351: 411-414.
    64. van der Geer P, Hunter T, Lindberg RA (1994) Receptor tyrosine kinases and their signal transduction pathways. Annu Rev Cell Biol 10:251-337.
    65. Vogelmann R, Nguyen-tat M, Giehl K, Adler G, Wedlich D,Menke A (2005) TGFβ-induced downregulation of E-cadherin-based cell-cell adhesion depends on PI3-kinase and PTEN. J Cell Sci 118: 4901-4912
    66. Vogel W, Gish GD, Alves F, Pawaon T (1997) The discoidin domain receptor tyrosine kinases are activated by collagen. Mol Cell 1:13-23.
    67. Vogel W (1999) Discoidin domain receptors: structural relations and functional implications. FASEB J 13:S77-S82.
    68. Vogel W, Aszodi A, Alves F, Pawaon T (2001) Discoidin domain receptor 1 tyrosine kinase has an essential role in mammary gland development. Mol Cell Biol 21: 2906-2917.
    69. Walter AO, Peng ZY, Cartwright CA (1999) The Shp-2 tyrosine phosphatase activates the Src tyrosine kinase by a non-enzymatic mechanism. Oncogene 18: 1911-1920
    70. Wang CZ, Hsu YM, Tang MJ (2005) Function of discoidin domain receptor I in HGF-induced branching tubulogenesis of MDCK cells in collagen gel. J Cell Physiol 203:295-304.
    71. Wang CZ, Su HW, Hsu YC, Shen MR, Tang MJ (2006) A discoidin domain receptor 1/SHP-2 signaling complex inhibits alpha2beta1-integrin-mediated signal transducers and activators of transcription 1/3 activation and cell migration. Mol Biol Cell 17: 2839–2852.
    72. Wang CZ, Yeh YC, Tang MJ (2009) DDR1/E-cadherin complex regulates the activation of DDR1 and cell spreading. Am J Physiol Cell Physiol 297:419-429.
    73. Wang X, Zheng M, Liu G, Xia W, McKeown-Longo PJ, Hung MC, Zhao J (2007) Krüppel-like factor 8 induces epithelial to mesenchymal transition and epithelial cell invasion. Cancer Res 67: 7184-7193.
    74. Whitehead J, Vignjevic D, Fütterer C, Beaurepaire E, Robine S, Farge E (2008) Mechanical factors activate β-catenin-dependent oncogene expression in APC1638N/+ mouse colon. HFSP J 2: 286-294.
    75. Yamada S, Nelson WJ (2007) Localized zones of Rho and Rac activities drive initiation and expansion of epithelial cell-cell adhesion. J Cell Biol 178: 517-527.
    76. Yeatman TJ (2004) A renaissance for Src. Nat Rev Cancer 4: 470-480.
    77. Yeh YC (2005) Discoidin domain receptor 1 inhibits collagen-induced cell spreading via suppression of Cdc42 activation mediated by α2β1 integrin. Master thesis.
    78. Yeh YC, Wang CZ, Tang MJ (2009) Discoidin domain receptor 1 activation suppresses alpha2beta1 integrin-dependent cell spreading through inhibition of Cdc42 activity. J Cell Physiol. 218: 146-156.
    79. Yeh YC, Wei WC, Wang YK, Lin SC, Sung JM, Tang MJ (2010) Transforming growth factor-{beta}1 induces Smad3-dependent {beta}1 integrin gene expression in epithelial-to-mesenchymal transition during chronic tubulointerstitial fibrosis. Am J Pathol 177:1743-1754.
    80. Yeh YC, Wu CC, Wang YK, Tang MJ (2011) DDR1 triggers epithelial cell differentiation by promoting cell adhesion through stabilization of E-cadherin. Mol Biol Cell 22:940-953.
    81. Yonemura S, Wada Y, Watanabe T, Nagafuchi A, Shibata M (2010) alpha-Catenin as a tension transducer that induces adherens junction development. Nat Cell Biol 12: 533-542.
    82. Yoshiura K, Kanai Y, Ochiai A, Shimoyama Y, Sugimura T, Hirohashi S (1995) Silencing of the E-cadherin invasion-suppressor gene by CpG methylation in human carcinomas. Proc Natl Acad Sci U S A. 92: 7416-7419.
    83. Zalvadil J and Böttinger EP (2005) TGF-β and epithelial-to-mesenchymal transitions. Oncogene 24: 5764-5774.
    84. Zheng G, Lyons JG, Tan TK, Wang Y, Hsu TT, Min D, Succar L, Rangan GK, Hu M, Henderson BR, Aleander SI, Harris DC (2009) Disruption of E-cadherin by matrix metalloproteinase directly mediates epithelial-mesenchymal transition downstream of transforming growth factor-beta1 in renal tubular epithelial cells. Am J Pathol 175:580-591.

    無法下載圖示 校內:2015-02-22公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE