簡易檢索 / 詳目顯示

研究生: 李名哲
Lee, Ming-Jhe
論文名稱: 矽化處理對310不銹鋼塵化性質之影響研究
Effect of siliconization on metal dusting behavior of 310 stainless steel
指導教授: 蔡文達
Tsai, Wen -Ta
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 88
中文關鍵詞: 塵化310不銹鋼矽化處理
外文關鍵詞: 310 stainless steel, metal dusting, siliconization
相關次數: 點閱:95下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究以包覆擴散製程(Pack cementation)對310不銹鋼施以矽化處理(Siliconization),探討其對310不銹鋼在高碳勢的CO-H2-H2O混合氣氛中發生塵化與否的影響。

      310不銹鋼在經過包覆擴散處理後,試片表面附著一層擴散處理反應生成物。由橫截面之EDS成分分析得知經矽化處理後之310不銹鋼之表面矽含量約為4 wt%,矽化層深度約為40 micro-meter。塵化試驗是在600℃之CO-H2-H2O混合氣體中,測試的材料包括310不銹鋼原材及經過矽化處理後之310不銹鋼,後者則包含保留及去除擴散矽化處理反應生成物兩種表面狀態的試片,進行500小時長時間暴露試驗。

      在長時間暴露試驗後,310不銹鋼原材與將包覆擴散處理反應殘留物質研磨清除之矽化310不銹鋼試片表面,並無蝕孔產生。而經包覆擴散處理後之310不銹鋼,若其表面保留反應殘留物質,則經長時間暴露試驗後,試片表面有相當明顯局部蝕孔生成,發生嚴重塵化現象。

     The purpose of this study is to explore the effect of siliconization on metal dusting behavior of 310 stainless steel. Siliconization was achieved by performing pack cementation treatment. The effect of 310 stainless steel with and without coatings on the metal dusting susceptibility 310 stainless steel exposed at 600℃ for 500 h in CO-H2-H2O gas mixture was investigated in this study.

     The siliconized stainless steel with silicon enriched on the surface was obtained after pack cementation process. The thickness of the surface siliconized layer was 40 micro-meter,and the average Si concentration was about 4 wt%. Exposure test at 600℃under metal dusting atmosphere was carried out for 500 h for specimens with or without siliconization. Two types of siliconized specimens were tested, namely one with the pack cementation reaction product (PCRP) remained on the surface, the other with PCRP removed by grinding.

     The results showed that the as-received 310 SS and siliconized 310 SS with PCRP removed from the surface were resistant to metal dusting attack exposed in the above atmosphere. However, pitting attack was found on the siliconized 310 SS if PCRP remained on the specimen surface.

    中文摘要 I Abstract II 總目錄 III 表目錄 VI 圖目錄 VII Figure Captions XII 第一章 前言 1 第二章 相關文獻及理論基礎 4 2.1 包覆擴散理論 (Pack cementation process) 4 2.2金屬塵化 (Metal dusting) 5 2.3塵化機制 6 2.3.1鐵及低合金鋼 6 2.3.2高合金鋼 10 2.4塵化熱力學 11 2.5合金元素對於高溫塵化性質之影響 13 2.5.1矽對於鐵及鐵基合金塵化性質之影響 13 2.5.2鉻對於鐵及鐵基合金塵化性質之影響 15 2.5.3鋁對於鐵及鐵基合金塵化性質之影響 16 第三章 實驗方法 29 3.1實驗材料 29 3.1.1試片準備 29 3.1.2包覆矽化處理 29 3.2矽化不銹鋼之性質分析 30 3.2.1化學組成分析 30 3.2.2結構分析 30 3.3長時間曝露試驗 31 3.3.1長時間暴露試驗試片準備 31 3.3.2長時間曝露試驗參數 32 3.4長時間曝露試驗後試片分析 33 3.4.1表面型態觀察及成份分析 33 3.4.2表面生成物結構分析 33 第四章、結果與討論 39 4.1矽化處理試片分析結果 39 4.1.1表面及橫截面觀察分析 39 4.1.2結構分析 41 4.2碳化/塵化試驗結果 41 4.2.1 310不銹鋼原材(AR) 41 4.2.2 去除反應殘留物之矽化310不銹鋼(SIO) 43 4.2.3 保留反應殘留物之矽化310不銹鋼(SIW) 48 4.2.4 AR/SIO/SIW之塵化示意圖 52 第五章、結論 80 參考文獻 82 表目錄 表3-1. 310不銹鋼之化學成分(wt%) 34 Table3-1. Chemical composition of the 310 SS. 34 圖目錄 圖2-1. 鐵金屬之塵化機制示意圖 18 圖2-2. 鐵及低合金鋼在塵化過程中碳濃度的變化 19 圖2-3. 高合金鋼的塵化機制示意圖 20 圖2-4. 高合金鋼的塵化機制示意圖 21 圖2-5. 塵化環境中主要氣體組成其反應平衡常數與溫度之關係 22 圖2-6. 添加矽對於 Fe-20%Cr-32%Ni合金在600℃之24%CO-74%H2-2%H2O,氣氛環境中塵化性質影響 23 圖2-7. 多種合金於560℃之73.2%H2-24.4%CO-2.4%H2O混合氣氛下暴露試驗後重量損失變化與時間之關係圖 24 圖2-8. 不同鉻含量於合金800及合金803經高碳勢氣氛暴露試驗後,重量變化與時間之關係 25 圖2-9. 添加鋁對於 Fe-20%Cr-32%Ni合金600℃之在24%CO-74%H2-2%H2O 混合氣氛下塵化性質影響 26 圖2-10. 經鋁化之合金800在620℃之25%CO-73%H2-2%H2O混合氣氛下,暴露729小時的試片表面形貌 27 圖2-11. 經鋁化之合金 800在620℃之25%CO-73%H2-2%H2O混合氣氛下暴露2000小時後重量變化與時間之關係 28 圖3-1. 實驗流程圖 35 圖3-2. 310不銹鋼試片之規格 36 圖3-3. 包覆擴散矽化處理溫度變化示意圖 37 圖3-4. 塵化試驗裝置示意圖 38 圖4- 1. (a) 310不銹鋼在經過包覆擴散矽化處理後表面巨觀形貌,(b)試片表面保留矽化處理時所產生的表面產物,經震盪清洗後所得之形貌,及(c)試片表面EDS光譜圖 53 圖4-2. 310不銹鋼在經過包覆擴散矽化處理後以碳化矽砂紙#1000適當研磨後(a)表面巨觀形貌觀察,(b)SEM形貌觀察,(c)圖(b)中黑點之EDS成分分析光譜圖,及(d) 圖(b)之EDS成分分析光譜圖 55 圖4-3. SIW其橫截面觀察與分析,(a) 試片橫截面微觀組織觀察, (b) 圖(a)點0之EDS點分析,(c) 圖(a)點A之EDS點分析,(d) 圖(a)點B之EDS點分析,(e) 圖(a)點C之EDS點分析,(f) 圖(a)點D之EDS點分析,(g) 圖(a)點E之EDS點分析,(h)矽含量之縱深分佈,及(i) 圖(a)點F之之EDS點分析 57 圖4-4. 經過包覆擴散處理之310不銹鋼,其表面之X光繞射分析圖,(a) 310不銹鋼,(b)未經研磨之矽化不銹鋼,及(c)經研磨之矽化不銹鋼 61 圖4-5. 310不銹鋼原材於600℃之40%CO-50%H2-10%H2O之混合氣氛中進行,500小時的長時間暴露試驗後其表面形態觀察與EDS分析結果,(a)巨觀形貌,(b)移除積碳後的表面形貌,(c)碳沉積物的局部放大圖,及(d)圖(c)的EDS分析結果 62 圖4-6. 310不銹鋼原材在600℃之40%CO-50%H2-10%H2O混合氣氛500小時暴露試驗後之表面X光繞射分析圖 63 圖4-7. 310不銹鋼原材於600℃之40%CO-50%H2-10%H2O混合氣氛中500小時暴露試驗後之橫截面金相與EDS成分線掃描分析結果 64 圖4-8. SIO 310不銹鋼於600℃之40%CO-50%H2-10%H2O混合氣氛中進行500小時暴露試驗後(a)試片表面積碳的形貌,及(b)移除碳沉積後的表面形貌 65 圖4-9. SIO 310不銹鋼於600℃之40%CO-50%H2-10%H2O混合氣氛中進行500小時暴露試驗後,(a)試片表面觀察,及(b) EDS成分分析 66 圖4-10. SIO 310不銹鋼於600℃之40%CO-50%H2-10%H2O混合氣氛中進行500小時暴露試驗後之表面X光繞射分析圖 67 圖4-11. SIO 310不銹鋼於600℃之40%CO-50%H2-10%H2O混合氣氛中,500小時暴露試驗後其橫截面SEM與EDS成分線掃描分析結果 68 圖4-12. SIW 310不銹鋼於600℃之40%CO-50%H2-10%H2O混合氣氛中進行500小時暴露試驗後其表面積碳的形態 69 圖4-13. 矽化310不銹鋼-表面保留反應殘留物質於600℃之40%CO-50%H2-10%H2O混合氣氛中進行500小時暴露試驗後 (a)表面形貌,(b) 圖(a)中局部放大圖,及(c) 圖(b)之EDS成分分析 70 圖4-14. 矽化310不銹鋼-表面保留反應殘留物質於600℃之40%CO-50%H2-10%H2O混合氣氛中進行500小時暴露試驗並再移除碳沉積後的表面形態 71 圖4-15. (a)矽化310不銹鋼-表面保留反應殘留物質於600℃之40%CO-50%H2-10%H2O混合氣氛中進行500小時暴露試驗並移除碳沉積後的表面形態,(b)圖(a)中A之EDS點分析,及(c)圖(a)中B之EDS點分析 72 圖4-16. SIW 310不銹鋼於600℃之40%CO-50%H2-10%H2O混合氣氛中進行500小時暴露試驗後之表面X光繞射分析圖 73 圖4-17. (a)表面未研磨之矽化310不銹鋼於600℃之40%CO-50%H2-10%H2O混合氣氛中進行500小時暴露試驗後橫截面金相,(b)圖(a)的局部放大圖,及(c)圖(b)中點A的EDS光譜圖 74 圖4-18. SIW 310不銹鋼於600℃之40%CO-50%H2-10%H2O混合氣氛中進行500小時的暴露試驗後之橫截面影像觀察結果(a)位置一,(b)位置二 75 圖4-19. SIW 310不銹鋼於600℃之40%CO-50%H2-10%H2O混合氣氛中進行500小時的暴露試驗後其試片表面上方無產物覆蓋區之橫截面SEM與EDS成分線掃描分析結果 76 圖4-20. SIW 310不銹鋼於600℃之40%CO-50%H2-10%H2O混合氣氛中進行500小時的暴露試驗後成分面分佈分析(a) 橫截面SEM(b)Fe,(c)Cr,(d)Ni,(e)Si,及(f)O 77 圖4-21. AR/SIO 310不銹鋼於600℃溫度下,500小時長時間的暴露試驗後其塵化示意圖 78 圖4-22. SIW 310不銹鋼於600℃溫度下,500小時長時間的暴露試驗後其塵化示意圖 79

    1.W. B. Hoyt and R. H. Caughey, “High temperature metal deterioration in atmospheres containing carbon-monoxide and hydrogen”, Corrosion, Vol. 15, 1959, pp. 627~630.
    2. P. A. Lefrancois and W. B. Hoyt, “Chemical thermodynamics of high temperature reactions in metal dusting corrosion”, Corrosion, Vol. 19, 1963, pp. 360~368.
    3. R. F. Hochman, “Basic studies of metal deterioration in carbonaceous atmospheres at elevated temperatures”, Proc. 4th Int. Congress Metal Corrosion, Ed. N. E. Hamner (Houston, Texas: NACE, 1972), pp. 258-263.
    4. R. F. Hochman, “Catastrophic deterioration of high-temperature alloys in carbonaceous atmospheres”, in Proc. Symp. High-temperature alloys with emphasis on environmental effects, Eds. Z. A. Foroulis, F. S. Pettit (Pennington, NJ: The electrochemical society, 1977) pp. 715~732.
    5. H. J. Grabke, R. Krajak, E. M. Müller-Lorenz, and S. Strauss, “Metal dusting of nickel-base alloys”, Materials and corrosion, Vol. 47, 1996, pp. 495~504.
    6. M. L. Holland, and H. J. de Bruyn, “Metal dusting failure in methane reforming plant”, The international journal of pressure vessels and piping, Vol. 66, 1996, Issue. 1~3, pp. 125~133.
    7. K. L. Baumert and J. J. Hoffman, “Materials experience in methanol reforming units”, Materials performance, Vol. 37, No. 5, 1998, pp. 60~64.
    8. H. J. Grabke, “Metal dusting of low-and high-alloy steels”, Corrosion, Vol. 51, No. 9, 1995, pp. 711~720.
    9. F. Dettenwanger, D. Grotmann, H. Friedrich, E. Berghf-Hasselbächer, M. Schorr, and M. Schütze, “Damage of a heat-treatment retort by metal dusting attack”, Materials and corrosion, Vol. 50, 1999, pp. 289~293.
    10. T. Shibasaki, K. Takemura, T. Mohri, and H. Hashimoto, “Experience with metal dusting in H2/CO/CO2/H2O atmosphere”, Ammonia technical manual, Vol. 36, 1996, pp. 165~179.
    11. H. Stahl, and S. G. Thmsen, “Survey of worldwide experience with metal dusting”, Ammonia technical manual, Vol. 36, 1996, pp. 180~190.
    12. D. C. Agarwal, and U. Brill, “Performance of alloy 602CA (USN N06025) in High temperature environment up to 1200 ℃ (=2200℉)”, Corrosion 2000, Paper No. 00521, March 26~31, Orlando, Florida, USA.
    13. H. J. Grabke, R. Krajak, and J. C. Nava Paz, “On the mechanism of catastrophic carburization: ‘Metal dusting’ ”, Corrosion science, Vol. 35, No. 5~8, 1993, pp. 1141~1150.
    14. C. Rosado and M. Schutz, “Protective behavior of newly developed coatings against metal dusting”, Material and corrosion, Vol. 54, No. 11, 2003, pp. 831~853.
    15. H. J. Grabke and E. M. Müller Lorenz, “Protection of high alloy steels against metal dusting by oxide scales”, Materials and corrosion, Vol. 49, 1998, pp. 317~320.
    16. D. Monceau, E. M. Muller-Lorenz, and H. J. Grabke, “Metal dusting of stainless steels”, Materials science forum, Vol. 251~254, 1997, pp. 665~670.
    17. S. Strauss and H. J. Grabke, “Role of alloying elements in steels on metal dusting”, Materials and corrosion, Vol. 49, 1998, pp. 321~327.
    18. D. J. Young, “High temperature corrosion in reducing gas”, The 10th asia pacific corrosion control conference, Paper No. K1, Oct. Bali, Indonesia 1997, pp. 27~31.
    19. N. V. Bangaru and R. C. Krutenat, “Diffusion coating of steel: Formation mechanism and microstructure of aluminized heat-resistance steels”, Journal vacuum science technology, Vol. B2(4), Oct.~ Dec, 1984, pp. 806~815.
    20. D. M. Miller, S. C. Kung, S. D. Scarberry and R. A. Rapp, “Simultaneous chromizing-aluminizing coating of austenitic stainless steel”, Oxidation of metals, Vol. 29, Nos. 3/4, 1988, pp. 239~254.
    21. F. D. Geib and R. A. Rapp, “Simultaneous chromizing-aluminizing coating of low alloy steel by a halide-activated, Pack cementation process”, Oxidation of metals, Vol. 40, Nos. 3/4, 1993, pp. 213~228.
    22. K. Y. Kim, H. G. Jung, B. G. Seong , and S. Y. Hwang, “Improvement of cyclic high-temperature corrosion resistance of pack-aluminized heat-resistance stainless steels”, Oxidation of metals, Vol. 41, Nos. 1/2, 1994, pp. 11~35.
    23. P. A. Choquet, E. R. Naylor, and R. A. Rapp, “Simultaneous chromizing-aluminizing coating of iron-base alloys”, Materials science and engineering, Vol. A121, 1989, pp. 413~418.
    24. W. D. Coasta, B. Gleeson , and D. J. Young, “Codeposited chromium- aluminide coating”, Journal of the electrochemical Society, Vol. 141, No. 10, Oct., 1994, pp. 2690~2698.
    25. R. Mevrel, C. Duret , and R. Pichoir, “Pack cementation processes”, Materials science and technology, Vol. 2, 1986, pp. 201.
    26. E. Q. Camp, C. Phillips, and L. Gross, “Corrosion of 18-8 alloy furnace tubes in high-temperature vapor phase cracking service”, Corrosion, Vol. 1, No. 3, 1945, pp. 149~160.
    27. J. C. Nava Paz, H. J. Grabke, “Metal dusting ”, Oxidation of metals, Vol. 39, Nos. 5/6, 1993, pp. 437~456.
    28. H. J. Grabke, C. B. Bracho-Troconis, E. M. Müller Lorenz, “Metal dusting of low alloy steels”, Werkstoffe und korrosion, Vol. 45, 1994, pp. 215~221.
    29. H. J. Grabke, “Mechanisms of metal dusting of law and high alloy steels”, Solid state phenomean, Vol. 41, 1995, pp. 3~16.
    30. H. J. Grabke, “Thermodynamics, mechanism and kinetics of metal dusting”, Materials and corrosion, Vol. 49, 1998, pp. 303~308.
    31. E. Pippel, J. Woltersodorf, H. J. Grabke, and S. Strauss, “Microprocesses of metal dusting on iron”, Steel research Vol. 66, No. 5, 1995, pp. 217~221.
    32. C. M. Chun and T. A. Ramanarayanan, “Metal dusting corrosion of low-chromium steels”, Oxidation and metals, Vol. 62, 2004, pp. 71~92.
    33. H. J. Grabke, “Metal dusting”, Materials and corrosion, Vol. 54, No. 10, 2003, pp. 736~746.
    34. H. J. de Bruyn, E. H. Edwin, and S. Brendryen, “Apparent influence of steam on metal dusting”, Corrosion 2001, Paper No. 01383, March 11~16, Houston, Texas, USA.
    35. P. J. Nolant, P. Banks , and S. K. Lister, “The carburization of Fe-Cr alloys and steels in CO/CO2 environments”, Proc. , Conf. on behavior of temperature alloys in aggressive environments, Petten, The netherlands, 1980, pp. 705~718.
    36. H. J. Grabke, E. M. Müller-Lorenz, S. Strauss, E. Pippel, and J. Woltersdorf, “Effects of grain size, cold working, and surface finish on the metal-dusting resistance of steels”, Oxidation of metals, Vol. 50, Nos. 3/4, 1998, pp. 241~254.
    37. B. A. Baker and G. D. Smith, “Metal dusting behavior of high temperature alloys”, Corrosion 1999, Paper No. 54, San antonio, Texas, USA, 1999.
    38. H. J. Grabke, R. Krajak, E. M. Müller Lorenz, “Metal dusting of high temperature alloys”, Werkstoffe und korrosion, Vol. 44, 1993, pp. 89~97.
    39. M. Maier and J. F. Norton, “Studies concerned with the metal dusting of Fe-Cr-Ni materials”, Corrosion 1999, Paper No. 75, San antonio, Texas, USA, 1999.
    40. G. W. Han, D. Feng, B. Deng, “Metal dusting and coking of alloy 803”, Corrosion science, Vol. 46, 2004, pp. 443~452.
    41. Wen-Ta Tsai and Hung-Wen Hsu, “Method for the Co-deposition of silicon and nitrogen on stainless steel surface”, United states patent No. US 6, 428, 849 B1, Aug. 6, 2002.
    42. D. A. Jones, Principles and prevention of corrosion, Macmillan publishing company, New york, 1992, pp. 414~419.

    下載圖示 校內:2006-07-15公開
    校外:2006-07-15公開
    QR CODE