| 研究生: |
陳學民 Chen, Hsueh-Min |
|---|---|
| 論文名稱: |
電磁場作用下薄鋼胚連鑄模內部流場分析之數值模擬研究 Study of Effects of Electromagnetic Field on Fluid Flow inside Thin-slab Continuous Casting Mold through Numerical Simulations |
| 指導教授: |
黃文星
Hwang, Weng-Sing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 薄鋼胚連鑄 、數值模擬 、電磁攪拌 、電磁制動 |
| 外文關鍵詞: | Continuous Casting, Thin Slab, Electromagnetic Braking, Electromagnetic stirring |
| 相關次數: | 點閱:143 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在薄鋼胚連鑄製程中,連鑄模是影響鋼胚品質的核心之處,連鑄模內部是一個複雜的物理和化學變化過程,與此同時各種製程因素如浸入式注嘴形狀、鑄胚尺寸、鑄造速度以及電磁技術的應用等也對鑄胚品質產生重要影響。然而薄鋼胚連鑄製程因為高溫、接近封閉的環境,難以用實驗方法對其內部發生的行為進行直觀的觀察和測量,因此,本研究採用數值模擬的方式探討來針對連鑄模內部流場進行分析研究。使用商用軟體ANSYS Mechanical及ANSYS Fluent建立一套三維模擬系統,先以實際的物理模型實驗來驗證此套模擬系統的可靠度,再利用此套模擬系統模擬連鑄模內部鋼液的流動行為。透過本研究的分析可以進一步了解薄鋼胚連鑄製程中施加電磁攪拌、電磁制動以及改變鑄胚厚度對於薄鋼胚連鑄模內部流場所造成的影響,並以此做為製程優化的基礎。
In the present work, commercial software packages ANSYS Fluent and ANSYS Mechanical are used for simulating the molten steel flow under the effect of magnetic field inside the mold. The reliability of the numerical models is verified using a comparison with results from experiments of physical models. Good agreement is found between the predictions and experimental results. Then the verified models are used to analysis two kinds of electro-magnetic technique, electromagnetic stirring (EMS) and electromagnetic braking (EMBR). The difference between velocity fields inside the mold with and without electromagnetic field is discussed. The results show that EMS are able to accelerate the flow velocity of the molten steel but the stirring ability will be limited due to the design of funnel type mold. On the other hand, EMBR can be well functioned if the maximum magnetic flux density is set to an appropriate value. The proposed models can be helpful to figure out this value.
[1] 洪敏雄, “薄鋼胚連鑄模內部流場與熱場分析之物理模型即數值模擬研究”, 碩士論文, 國立成功大學, 2013.
[2] E. Basson, “World Steel in Figures”, International Iron and Steel Institute, 2006.
[3] M. M. Wolf, “History of Continuous Casting”, Iron and Steel Society, 1992, pp. 83-137.
[4] 夏莉, “線性電磁攪拌過程的三維電磁場、流場的數值模擬”, 碩士論文, 東北大學, 2003.
[5] A. Hajari, S. H. Seyedein and M. R. Aboutalebi, “Mathematical Modeling of Transport Processes in Funnel Shaped Mold of Steel Thin Slab Continuous Caster”, Journal of Heat Transfer, 2011, 133(6).
[6] 金光, “CSP連鑄熱過程數值模擬”, 碩士論文, 西安建築科技大學, 2004.
[7] 高靜娜, “CSP薄板胚連鑄胚二次冷卻凝固過程的研究”, 碩士論文, 燕山大學, 2006.
[8] K. Sasaki, Y. Sugitani, M. Mura and T. Watanabe, “続鋳造のモールド内不均一凝固におよぽす鋳込流の影響”, Tetsu-to-Hagané, 1976, 62(11): pp. S502-S509.
[9] H. Tanaka, H. Kuwatori and R. Nishihara, “Analysis of Continuous Casting Powder Entrapping Phenomena by Water-model Experiments” Tetsu-to-Hagané, 1992, 78(5): pp. 761-766.
[10] E. Takeuchi, H. Fuji, N. Miyasaka, T. Ohashi, T. Hiraoka and M. Yamahiro, “CO Blowhole Formation and Suppression in Continuously Cast Slab”, Tetsu-to-Hagané, 1983, 69(14): pp. 1607-1614.
[11] K. Okazawa, A. Kiyose, I. Sawada, T. Toh and E. Takeuchi, “Influence of Molten Steel Flow on Inclusion Behavior near the Solidification Shell”, Tetsu-to- Hagané, 1996, 82(9): pp. 749-753.
[12] H. Shibata, H. Yin, S. Yoshinaga, T. Emi and M. Suzuki, “In-situ Observation of Engulfment and Pushing of Nonmetallic Inclusions in Steel Melt by Advancing Melt/Solid Interface”, The Iron and Steel Institute of Japan, 1998, 38(2): pp. 149-156.
[13] J. Kubota, N. Kubo, M. Suzuki, T. Ishii, R. Nishimachi and N. Aramaki, “Steel Flow Control with Travelling Magnetic Field for Slab Continuous Caster Mold”, Tetsu-to-Hagané, 2000, 86(4): pp. 271-277.
[14] H. Harada, E. Takeuchi, M. Zeze and T. Ishii, “New Sequential Casting of Different Grade of Steel with a Level DC Magnetic Field”, Tetsu-to-Hagané, 2000, 86(4): pp. 278-284.
[15] E. Takeuchi, H. Fujii, T. Ohashi, H. Tanno, A. Takao, I. Furugaki and H. Kitamura, “Continuous Casting of Pseudo-Rimmed Steel with Electromagnetic Stirring in the Mold”, Tetsu-to-Hagané, 1983, 69(14): pp. 1615-1622.
[16] S. Idogawa, H. Tozawa and Y. Kitano, “Control of Molten Steel Flow in Continuous Casting Mold by Two Static Magnetic Fields Covering the whole Width”, Kawasaki Steel Giho, 1996, 28: pp. 46-51.
[17] T. Mochida, Y. Kishimoto, T. Yamada, H. Iijima, S. Nara and S. Takeuchi, “Flow Control of Molten Steel in Mold with Superconducting Magnets”, Tetsu-to-Hagané, 2002, 88(7): pp. 393-399.
[18] J. Yoshida, M. Iguchi and S. Yokoya, “Suppression of Mold Powder Entrapment Using Immersion Nozzle of Elliptic Cross Section”, Tetsu-to-Hagané, 2002, 88(5): pp. 264-269.
[19] S. Yokoya, S. Takagi, M. Iguchi, K. Marukawa and S. Hara, “Model Experiment of Swirl Effect in Bottomless Immersion Nozzle on Molten Steel Flow in Slab CC Mold”, Tetsu-to-Hagané, 2000, 86(4): pp. 259-263.
[20] 胡文瑞, “字宙磁流体力学”, 北京科学出版社, 1987, pp. 1-17.
[21] R. Moreau, “Magnetohydrodynamics”, Dordrecht: Kluwer, 1990, pp. 36-49.
[22] J. Hunt, “Magnetohydrodynamic flow in rectangular ducts”, Journal of Fluid Mechanics, 1965, 21: pp. 577-590.
[23] B. G. Thomas, “Continuous Casting:Modeling”, The Encyclopedia of Advanced Materials, 2001.
[24] A. W. Cramb, E. Szekeres, “Mold Operation for Quality and Productivity”, The Iron and Steel Society of AIME, 1992, pp. 37-82.
[25] J. K. Brimacombe, I. V. Samarasekera, “The Challenge of Thin Slab Casting”, Iron Steelmaker, 1994, 21(11): pp. 29-39.
[26] K. Wunnenberg, K. Schwerdtfeger, “Principles in Thin Slab Casting”, Iron Steelmaker, 1995, 4: pp. 25-31.
[27] A. Yamanaka, S. Kumakura, K. Okamura, “Thin Slab Casting with Liquid Core Reduction”, Ironmaking and Steelmaking, 1999, 26(6): pp. 457-462.
[28] M. Kolakowski, H. Streubel, “Mold for Continuous Casting of Steel Strip”, U.S. Patent No: 4635702, SMS Schloemann-Siemag, Republic of Germany, 1987.
[29] H. Struebel, “Mold for Continuous Casting of Metal Strip”, U.S. Patent No: 472115l, SMS Schloemann-Siemag, Republic of Germany, 1988.
[30] J. Vogels, H. Struebel and H. O. Thorner, “Vertical or Bow-Type Continuous Casting Machine for Steel”, U.S. Patent No: 4719961, SMS Schloemann-Siemag, Republic of Germany, 1988.
[31] H. Grothe, P. Boese, M. Kolakowski and H. Lax, “Apparatus for Connecting a Dummy Strip to the Leading End of a Casting in the Start-Up of the Continuous Casting of Strip Metal”, U.S. Patent No: 4719960, SMS Schloemann-Siemag, Republic of Germany, 1988.
[32] G. Flemming and M. Kolakowski, “Method for Concluding the Operation of the Continuous Casting of Strip Metal”, U.S. Patent No: 4729420, SMS Schloemann-Siemag, Republic of Germany, 1988.
[33] H. Zhang, L. G. Zhao, H. B. Tao, A. Q. Liu and L.J. Li, “Numerical Simulation on Fluid Flow and Heat Transfer Behaviors in Mould of CSP Thin Slab Caster”, Iron and Steel, 2006, 41(5): pp. 24-28.
[34] Z. I. Morita and T. Emi, “An Introduction to Iron and Steel Processing”, Kawasaki Steel 21st Century Foundation, 2003.
[35] H. Nam, H. S. Park and J. K. Yoon, “Numerical Analysis of Fluid Flow and Heat Transfer in the Funnel Type Mold of a Thin Slab Caster”, The Iron and Steel Institute of Japan, 2000, 40(9): pp. 886-892.
[36] E. Takeuchi, T. Toh, H. Harada, M. Zeze, H. Tanaka, M. Hojo, T. Ishil and K. Shigematsu, “Advances of Applied MHD Technology for Continuous Casting Process”, Nippon Steel Technical Report No: 61, 1994.
[37] 田溪岩, “薄板胚漏斗型結晶器內電磁連鑄過程的數值模擬研究”, 博士論文, 東北大學, 2010.
[38] 毛衛民、趙愛民、崔成林、鐘雪友, “電磁攪拌對固態AlSi7Mg合金初生α-Al的影響規律”, 金屬學報, 1999, 35(9): pp. 971-974.
[39] 李樹榮, “Al-37%Si合金磷變質及電磁攪拌顯微組織的研究”, 機械工程材料,1998, 22(5): pp. 14-16.
[40] 曹志強, “電磁攪拌對灰鑄鐵宏觀偏析的影響”, 金屬學報, 1992, 28(2): pp. 82-85.
[41] Z. F. Zhang, B. Wen and T. J. Li, “Effects of Imposition of Multi-Electromagnetic Field on Quality of Cast Metal in Continuous Casting”, The 3rd International Symposium on Electromagnetic Processing of Materials, Nagoya, Japan, 2000, pp. 310-314.
[42] Z. F. Zhang, S. Yao and T. J. Li, “Electromagnetic Continuous Casting by Imposing Multi-Electromagnetic Field”, Transactions of Nonferrous Metals Society of China 2000, 10(6): pp. 741-744.
[43] 楊吉春、王磊用, “M-IEMS改善重軌鋼大方胚中心碳偏析和組織”, 包頭鋼鐵學院學報, 2001, 20(2): pp. 125-129.
[44] C. T. Liu and Y. M. Chen, “Dynamic Characteristics Investigations of an In-mold Electromagnetic Stirrer for Steel Plate Manufacturing Process”, Proc. of the IEEE IAS 2006 Annual Meeting, 2006, 1: pp. 148-152.
[45] K. Fujisaki, “In-Mold Electromagnetic Stirring in Continuous Casting”, IEEE Trans. Ind. Appl., 2001, 37(4): pp. 1098-1104.
[46] T. Toh, H. Hasegawa and H. Harada, “Evaluation of Multiphase Phenomena in Mold Pool under In-Mold Electromagnetic Stirring in Steel Continuous Casting”, The Iron and Steel Institute of Japan, 2001, 41(10): pp. 1245-1251.
[47] B. Li and F. Tsukihashi, “Effects of Electromagnetic Brake on Vortex Flows in Thin Slab Continuous Casting Mold”, The Iron and Steel Institute of Japan, 2006, 46(12): pp. 1833-1838.
[48] X. Y. Tian, B. W. Li and J. C. He, “Electromagnetic Brake Effects on the Funnel Shape Mold of a Thin Slab Caster Based on a New Type Magnet”, Metallurgical and Materials Transactions B, 2009, 40B: pp. 596-604.
[49] Z. D. Qian and Y. L. Wu, “Large Eddy Simulation of Turbulent Flow with the Effects of DC Magnetic Field and Vortex Brake Application in Continuous Casting”, The Iron and Steel Institute of Japan, 2004, 44(1): pp. 100-107.
[50] 铃木健一郎、村田餐治、中西恭二、新良正典、咒玉正筢、小岛信司、宫崎容治, “電磁ブレーキによるスラブ連鋳機鋳型内溶鋼流動の制御”, The Iron and Steel Institute of Japan, 1983, 69(12): pp. s912.
[51] 幹勇等、仇聖桃、蕭澤強, “連續鑄鋼過程數學物理類比”, 北京冶金工業出版社, 2001.
[52] 陶文铨, “数值传热学”, 西安交通大学出版社, 2001.
[53] 陶文铨, “计算传热学的近代进展”, 北京科学出版社, 2000.
[54] “ANSYS Fluent Theory Guide”, ANSYS, Inc., 2011.
[55] 王連勇, “電磁連鑄中穩恆磁場的設計及數值計算”, 博士論文, 東北大學, 1999.
[56] B. Li, T. Okane, and T. Umeda, “Modeling of Molten Metal Flow in a Continuous Casting Process Considering the Effects of Argon Gas Injection and Static Magnetic-Field Application”, Metallurgical and Materials Transactions B, 2000, 31B: pp. 1491-1503.
[57] 賈光霖、王仁貴、喬元君、高允彥, “恒穩磁場對注流制動效果的數學模擬”, 東北大學學報, 1993, 14(1): pp. 40-43.