簡易檢索 / 詳目顯示

研究生: 張明玉
Chang, Ming-Yu
論文名稱: 薄膜生物反應器實廠處理光電廢水之評估
Evaluation of a Full-Scale Membrane Bioreactor Treating TFT-LCD Wastewater
指導教授: 黃良銘
Whang, Liang-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 129
中文關鍵詞: TFT-LCDMBR膠體性COD食微比AOBT-RFLP
外文關鍵詞: TFT-LCD, MBR, colloidal COD, F/M ratio, AOB, T-RFLP
相關次數: 點閱:143下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著光電產業持續擴展,產生之廢水量,不可小覷,根據環保署統計,台灣光電產業一天排放廢水總量高達21萬噸,其中,含高濃度有機氮之有機溶劑就占了三分之一,故光電產業廢水之TKN/COD比值約為0.15,遠大於一般活性污泥程序所需營養比值0.05,屬於高氮廢水。因此,於實廠廢水生物處理系統中,必須注意其硝化效能,以提升整體除氮的效率,但實廠生物處理系統常因為操作參數的不穩定,如有機負荷過高或含有過高濃度之膠體性COD,而間接影響硝化作用。有鑑於此,本研究的目的就是找出能夠穩定生物處理系統硝化效能之操作參數,增加生物處理系統除氮之穩定性。
    本研究監測含有MEA及DMSO之TFT-LCD實廠廢水之水質,並利用批次實驗與分生方法進行硝化效能及硝化菌族群評估。該廠使用薄膜生物反應器系統(MBR)進行廢水處理,過程中發現A/O/A/O MBR時期之硝化效能不彰,而在O/O/O/O MBR中則在後期硝化效能才有起色,調整操作參數後,在最後的A/O/O/O MBR時期,成功達到硝化。菌相方面,使用T-RFLP方法,以amoA基因監測優勢AOB族群,發現當優勢族群出現Nitrosomonas oligotropha-like (AOB)時,即有好的硝化現象。
    另外,若假設實廠進流COD濃度為1000 mg/L,經計算後可生成297 kg-VSS/day的汙泥量,可作為廢棄汙泥量及實廠調控汙泥濃度之參考。此外,批次結果顯示pH值應調控在6.5至7之間,可穩定硝化作用;且汙泥濃度過低而食微比高於0.4 mg COD/mg VSS時,比硝酸生成速率明顯降低,造成硝化效能不彰;系統中膠體性COD濃度高於200 mg/L時,也會抑制硝化作用;實廠廢水中如含有高於19 mg/L的DMS時,亦會造成氨氧化的抑制,影響硝化效能,這些操作參數都可提供於實廠,以增加生物處理系統除氮之穩定性。

    Accompanying with the increasing production of thin film transistor liquid crystal display (TFT-LCD), the amount of wastewater produced also increased. According to the EPA statistics, optic-electronic industry discharge about higher 210,000 m3/day of TFT-LCD wastewater in Taiwan. On average, organic solvent-containing wastewater contributes almost one third of the total wastewater. The wastewater of full-scale in this study was nitrogen-rich and the TKN/COD ratio of about 0.15, which is much higher than 0.05 found in general activated sludge process. However, the performance of nitrification would be affected due to unstable operation parameters, like high organic loading to this nitrogen-rich wastewater. Therefore, the aim of this study is to find the optimal operation parameters in a full-scale membrane bioreactor (MBR) treating monoethanolamine (MEA)/dimethyl sulfoxide (DMSO)-containing TFT-LCD wastewater to maintane surperior nitrification performance and enhance the stability of biological treatment systems.
    The results of water quality of the full-scale A/O/A/O MBR system suggested that there was no nitrification due to high organic loading, high colloidal COD, low VSS concentration. To improve the nitrification performance, the system was modified to an O/O/O/O MBR and then to an A/O/O/O MBR system. The T-RFLP results of amoA gene, the occurrence of Nitrosomonas oligotropha-like (AOB) was positively related to successful nitrification in the MBR systems.
    Furthermore, the results of sludge production suggested that 297 kg-VSS/day would be produced by degrading 1000 mg/L COD of influent organic compounds.Poor nitrification was observed under low VSS concentration and high organic loading, suggesting that F/M ratio should less than 0.4 mg COD/mg VSS. Colloidal COD cocnecntration is higher than 200 mg/L, would inhibit nitrification. When DMS concentration is higher 19 mg/L in full-scale, resulting inhibitor ammonium oxidation then reduce the nitrification.

    目錄 摘要 I ABSTRACT III 誌謝 V 目錄 VII 圖目錄 XI 表目錄 XIII 第一章 前言 1 第二章 文獻回顧 5 2.1 TFT-LCD產業製程程序 5 2.2 TFT-LCD製程主要有機廢水來源與特性 7 2.2.1 乙醇胺(Monoethanolamine, MEA)特性與生物降解機制 12 2.2.2 二甲基亞楓(Dimethylsulfoxide,DMSO)特性與生物降解機制 14 2.2.3 氫氧化四甲基胺(Tetra-methyl ammonium hydroxide,TMAH)特性與生物降解機制 18 2.2.4 TFT-LCD有機製程廢水處理技術 21 2.3 氮循環 23 2.3.1 生物除氮程序 26 2.3.2 硝化作用 27 2.3.3 脫硝作用 30 2.3.4 硝化菌之多樣性 32 2.3.5 活性汙泥中硝化菌生態結構 36 2.4 薄膜生物反應器(MEMBRANE BIOREACTOR, MBR) 38 2.5 生物技術在生物程序中之應用 41 2.5.1 總DNA萃取 43 2.5.2 聚合酶連鎖反應(Polymerase Chain Reaction, PCR) 43 2.5.3 末端限制酶片段長度多型性分析(Terminal Restriction Fragment Length Ploymorphism, T-RFLP) 46 第三章 實驗設備與分析方法 49 3.1 實驗架構 49 3.1.1 實廠生物處理流程概述 50 3.2 好氧批次實驗設計 53 3.2.1 閉瓶批次實驗 53 3.2.2 開放批次實驗 53 3.3 水質分析與使用儀器 56 3.3.1 一般水質分析 56 3.3.2 特殊成分分析 57 3.4 分子生物檢測技術 59 3.4.1 總DNA萃取 59 3.4.2 聚合酶連鎖反應(Polymerase Chain Reaction, PCR) 60 3.4.3 末端限制酶片段長度多型性分析(Terminal Restriction Fragment Length Ploymorphism, T-RFLP) 63 第四章 結果與討論 67 4.1 實廠A/O/A/O MBR時期 68 4.1.1 A/O/A/O MBR操作參數及硝化效能評估 69 4.2 實廠O/O/O/O MBR時期 73 4.2.1 O/O/O/O MBR操作參數及硝化效能評估 74 4.3 實廠A/O/O/O MBR時期 77 4.3.1 A/O/O/O MBR操作參數及硝化效能評估 78 4.4 綜合比較 83 4.4.1 影響硝化效能因子─pH值 84 4.4.2 影響硝化效能因子─食微比(F/M) 87 4.4.2.1. 批次試驗─食微比(S0/X0) 89 4.4.3 影響硝化效能因子─膠體性COD 91 4.4.3.1. 膠體性COD之分析 93 4.5 實廠水質─不同氨氮濃度下硝化效能與DMSO及DMS降解之影響 95 4.5.1 批次試驗─不同氨氮濃度下硝化效能與DMSO及DMS降解之影響 97 4.5.1.1. 不同氨氮濃度下硝化效能對DMSO降解效率之影響 97 4.5.1.2. 不同氨氮濃度下硝化效能對DMS降解效率之影響 100 4.5.1.3. 綜合比較 103 4.5.1.4. DMS抑制硝化之批次實驗 105 4.6 氨氧化微生物族群結構與變化 107 4.7 MEA與DMSO產生之汙泥理論值 110 4.7.1 MEA產生之汙泥理論值 110 4.7.2 DMSO產生之汙泥理論值 111 4.7.3 實廠中MEA和DMSO產生之汙泥理論值 112 4.7.4 計算實廠上進流有機物生成之Biomass量 113 第五章 結論與建議 115 5.1 結論 115 5.2 建議 116 參考文獻 117

    參考文獻
    Amann, R., Stromley, J., Devereux, R., Key, R., Stahl, D. 1992. Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Applied and environmental microbiology, 58(2), 614-623.
    Andreae, M.O. 1980. Dimethylsulfoxide in marine and freshwaters. Limnology and Oceanography, 25(6).
    Anthonisen, A., Loehr, R., Prakasam, T., Srinath, E. 1976. Inhibition of nitrification by ammonia and nitrous acid. Water Pollution Control Federation, 835-852.
    Anthony, C. 1982. The biochemistry of methylotrophs.
    Arellano‐García, L., Revah, S., Ramirez, M., Gomez, J., Cantero, D. 2009. Dimethyl sulphide degradation using immobilized Thiobacillus thioparus in a biotrickling filter. Environmental technology, 30(12), 1273-1279.
    Asakawa, S., Sauer, K., Liesack, W., Thauer, R.K. 1998. Tetramethylammonium: coenzyme M methyltransferase system from Methanococcoides sp. Archives of microbiology, 170(4), 220-226.
    Avaniss-Aghajani, E., Jones, K., Holtzman, A., Aronson, T., Glover, N., Boian, M., Froman, S., Brunk, C.F. 1996. Molecular technique for rapid identification of mycobacteria. Journal of clinical microbiology, 34(1), 98-102.
    Bentley, M.D., Douglass, I.B., Lacadie, J.A., Whittier, D.R. 1972. The photolysis of dimethyl sulfide in air. Journal of the Air Pollution Control Association, 22(5), 359-363.
    Bock, E., Schmidt, I., Stüven, R., Zart, D. 1995. Nitrogen loss caused by denitrifying Nitrosomonas cells using ammonium or hydrogen as electron donors and nitrite as electron acceptor. Archives of microbiology, 163(1), 16-20.
    Bradbeer, C. 1965. The clostridial fermentations of choline and ethanolamine I. Preparation and properties of cell-free extracts. Journal of Biological Chemistry, 240(12), 4669-4674.
    Braker, G., Ayala-del-Rı́o, H.L., Devol, A.H., Fesefeldt, A., Tiedje, J.M. 2001. Community structure of denitrifiers, Bacteria, and Archaea along redox gradients in Pacific Northwest marine sediments by terminal restriction fragment length polymorphism analysis of amplified nitrite reductase (nirS) and 16S rRNA genes. Applied and environmental microbiology, 67(4), 1893-1901.
    Brimblecombe, P., Shooter, D. 1986. Photo-oxidation of dimethylsulphide in aqueous solution. Marine Chemistry, 19(4), 343-353.
    Bruce, K.D. 1997. Analysis of mer Gene Subclasses within Bacterial Communities in Soils and Sediments Resolved by Fluorescent-PCR-Restriction Fragment Length Polymorphism Profiling. Applied and environmental microbiology, 63(12), 4914-4919.
    Burrell, P.C., Keller, J., Blackall, L.L. 1998. Microbiology of a nitrite-oxidizing bioreactor. Applied and environmental microbiology, 64(5), 1878-1883.
    Calderón, K., González-Martínez, A., Montero-Puente, C., Reboleiro-Rivas, P., Poyatos, J.M., Juárez-Jiménez, B., Martínez-Toledo, M.V., Rodelas, B. 2012. Bacterial community structure and enzyme activities in a membrane bioreactor (MBR) using pure oxygen as an aeration source. Bioresource Technology, 103(1), 87-94.
    Cancilla, M., Powell, I., Hillier, A., Davidson, B. 1992. Rapid genomic fingerprinting of Lactococcus lactis strains by arbitrarily primed polymerase chain reaction with 32P and fluorescent labels. Applied and environmental microbiology, 58(5), 1772-1775.
    Carrera, J., Baeza, J.A., Vicent, T., Lafuente, J. 2003. Biological nitrogen removal of high-strength ammonium industrial wastewater with two-sludge system. Water Research, 37(17), 4211-4221.
    Carrera, J., Vicent, T., Lafuente, J. 2004. Effect of influent COD/N ratio on biological nitrogen removal (BNR) from high-strength ammonium industrial wastewater. Process Biochemistry, 39(12), 2035-2041.
    Chamchoi, N., Nitisoravut, S. 2007. Anammox enrichment from different conventional sludges. Chemosphere, 66(11), 2225-2232.
    Chang, K.F., Yang, S.Y., You, H.S., Pan, J.R. 2008. Anaerobic treatment of tetra-methyl ammonium hydroxide (TMAH) containing wastewater. Semiconductor Manufacturing, IEEE Transactions on, 21(3), 486-491.
    Charlson, R.J., Lovelock, J.E., Andreae, M.O., Warren, S.G. 1987. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature, 326(6114), 655-661.
    Chen, T.K., Chen, J.N. 2004. Combined membrane bioreactor(MBR) and reverse osmosis(RO) system for thin-film transistor- Liquid crystal display TFT-LCD, industrial wastewater recycling. Wastewater Reclamation and Reuse IV, 50(2), 99-106.
    Chen, T.K., Ni, C.H., Chen, J.N. 2003. Nitrification–Denitrification of Opto-electronic Industrial Wastewater by Anoxic/Aerobic Process. Journal of Environmental Science and Health, Part A, 38(10), 2157-2167.
    Cicek, N., Winnen, H., Suidan, M.T., Wrenn, B.E., Urbain, V., Manem, J. 1998. Effectiveness of the membrane bioreactor in the biodegradation of high molecular weight compounds. Water Research, 32(5), 1553-1563.
    Clement, B.G., Kehl, L.E., DeBord, K.L., Kitts, C.L. 1998. Terminal restriction fragment patterns (TRFPs), a rapid, PCR-based method for the comparison of complex bacterial communities. Journal of Microbiological Methods, 31(3), 135-142.
    De Bont, J., Van Dijken, J., Harder, W. 1981. Dimethyl sulphoxide and dimethyl sulphide as a carbon, sulphur and energy source for growth of Hyphomicrobium S. Journal of general microbiology, 127(2), 315-323.
    Dionisi, H.M., Layton, A.C., Harms, G., Gregory, I.R., Robinson, K.G., Sayler, G.S. 2002. Quantification of Nitrosomonas oligotropha-like ammonia-oxidizing bacteria and Nitrospira spp. from full-scale wastewater treatment plants by competitive PCR. Applied and environmental microbiology, 68(1), 245-253.
    Drews, A. 2010. Membrane fouling in membrane bioreactors—Characterisation, contradictions, cause and cures. Journal of membrane science, 363(1), 1-28.
    Dytczak, M.A., Londry, K.L., Oleszkiewicz, J.A. 2008. Activated sludge operational regime has significant impact on the type of nitrifying community and its nitrification rates. Water Research, 42(8), 2320-2328.
    Fu, Z., Yang, F., Zhou, F., Xue, Y. 2009. Control of COD/N ratio for nutrient removal in a modified membrane bioreactor (MBR) treating high strength wastewater. Bioresource Technology, 100(1), 136.
    Fukushima, T., Whang, L.M., Chen, P.C., Putri, D.W., Chang, M.Y., Wu, Y.J., Lee, Y.C. 2013. Linking TFT-LCD Wastewater Treatment Performance to Microbial Population Abundance of Hyphomicrobium and Thiobacillus spp. Bioresource Technology.
    Germain, E., Nelles, F., Drews, A., Pearce, P., Kraume, M., Reid, E., Judd, S.J., Stephenson, T. 2007. Biomass effects on oxygen transfer in membrane bioreactors. Water Research, 41(5), 1038-1044.
    Glindemann, D., Novak, J., Witherspoon, J. 2006. Dimethyl sulfoxide (DMSO) waste residues and municipal waste water odor by dimethyl sulfide (DMS): the north-east WPCP plant of Philadelphia. Environmental science & technology, 40(1), 202-207.
    Glindemann, D., Novak, J.T., Witherspoon, J. 2007. Aeration tank odour by dimethyl sulphoxide (DMSO) waste in sewage. Water science and technology: a journal of the International Association on Water Pollution Research, 55(5), 319.
    Gong, Z., Yang, F., Liu, S., Bao, H., Hu, S., Furukawa, K. 2007. Feasibility of a membrane-aerated biofilm reactor to achieve single-stage autotrophic nitrogen removal based on Anammox. Chemosphere, 69(5), 776.
    Hampton, D., Zatman, L. 1973. The Metabolism of Tetrametbylammoniuin Chloride by Bacterium 5H2. Biochemical Society Transactions, 1, 667-668.
    Hayes, A.C., Liss, S.N., Allen, D.G. 2010. Growth kinetics of Hyphomicrobium and Thiobacillus spp. in mixed cultures degrading dimethyl sulfide and methanol. Applied and environmental microbiology, 76(16), 5423-5431.
    He, S.Y., Lin, Y.H., Hou, K.Y., Hwang, S.C.J. 2011. Degradation of dimethyl-sulfoxide-containing wastewater using airlift bioreactor by polyvinyl-alcohol-immobilized cell beads. Bioresource Technology, 102(10), 5609-5616.
    Henze, M. 2000. Activated sludge models: ASM1, ASM2, ASM2d and ASM3. International Water Assn.
    Hirano, K., Okamura, J., Taira, T., Sano, K., Toyoda, A., Ikeda, M. 2001. An efficient treatment technique for TMAH wastewater by catalytic oxidation. Semiconductor Manufacturing, IEEE Transactions on, 14(3), 202-206.
    Horz, H.P., Rotthauwe, J.H., Lukow, T., Liesack, W. 2000. Identification of major subgroups of ammonia-oxidizing bacteria in environmental samples by T-RFLP analysis of amoA PCR products. Journal of Microbiological Methods, 39(3), 197-204.
    Hsieh, K.L., Lu, Y.S. 2008. Model construction and parameter effect for TFT-LCD process based on yield analysis by using ANNs and stepwise regression. Expert Systems with Applications, 34(1), 717-724.
    Hu, M., Wang, X., Wen, X., Xia, Y. 2012a. Microbial community structures in different wastewater treatment plants as revealed by 454-pyrosequencing analysis. Bioresource Technology.
    Hu, T.H., Whang, L.M., Liu, P.W.G., Hung, Y.C., Chen, H.W., Lin, L.B., Chen, C.F., Chen, S.K., Hsu, S.F., Shen, W. 2012b. Treatment of TMAH (tetra-methyl ammonium hydroxide) in A Full-Scale TFT-LCD Wastewater Treatment Plant. Bioresource Technology.
    Hwang, S.C.J., Wu, J.Y., Lin, Y.H., Wen, I., Hou, K.Y., He, S.Y. 2007. Optimal dimethyl sulfoxide biodegradation using activated sludge from a chemical plant. Process Biochemistry, 42(10), 1398-1405.
    Hyman, M.R., Murton, I.B., Arp, D.J. 1988. Interaction of ammonia monooxygenase from Nitrosomonas europaea with alkanes, alkenes, and alkynes. Applied and environmental microbiology, 54(12), 3187-3190.
    Itokawa, H., Hanaki, K., Matsuo, T. 2001. Nitrous oxide production in high-loading biological nitrogen removal process under low COD/N ratio condition. Water Research, 35(3), 657-664.
    Johnstone, B.H., Jones, R.D. 1988. Effects of light and CO on the survival of a marine ammonium-oxidizing bacterium during energy source deprivation. Applied and environmental microbiology, 54(12), 2890-2893.
    Jones, A., Turner, J. 1973. Microbial metabolism of amino alcohols. 1-Aminopropan-2-ol and ethanolamine metabolism via propionaldehyde and acetaldehyde in a species of Pseudomonas. Biochemical Journal, 134(1), 167.
    Judd, S. 2011. The MBR book: principles and applications of membrane bioreactors for water and wastewater treatment. Butterworth-Heinemann.
    Juliette, L.Y., Hyman, M.R., Arp, D.J. 1993. Inhibition of ammonia oxidation in Nitrosomonas europaea by sulfur compounds: thioethers are oxidized to sulfoxides by ammonia monooxygenase. Applied and environmental microbiology, 59(11), 3718-3727.
    Juretschko, S., Timmermann, G., Schmid, M., Schleifer, K.-H., Pommerening-Röser, A., Koops, H.-P., Wagner, M. 1998. Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Applied and environmental microbiology, 64(8), 3042-3051.
    Könneke, M., Bernhard, A.E., José, R., Walker, C.B., Waterbury, J.B., Stahl, D.A. 2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature, 437(7058), 543-546.
    Kaplan, B.H., Stadtman, E. 1968. Ethanolamine Deaminase, a Cobamide Coenzyme-dependent Enzyme I. PURIFICATION, ASSAY, AND PROPERTIES OF THE ENZYME. Journal of Biological Chemistry, 243(8), 1787-1793.
    Ke, S. 2003. Spin–spin interaction in ethanolamine deaminase. Biochimica et Biophysica Acta (BBA)-General Subjects, 1620(1), 267-272.
    Keltjens, J.T., Vogels, G.D. 1993. Conversion of methanol and methylamines to methane and carbon dioxide. in: Methanogenesis, Springer, pp. 253-303.
    Kino, K., Murakami-Nitta, T., Oishi, M., Ishiguro, S., Kirimura, K. 2004. Isolation of dimethyl sulfone-degrading microorganisms and application to odorless degradation of dimethyl sulfoxide. Journal of bioscience and bioengineering, 97(1), 82-84.
    Klemedtsson, L., Jiang, Q., Kasimir Klemedtsson, Å., Bakken, L. 1999. Autotrophic ammonium-oxidising bacteria in Swedish mor humus. Soil Biology and Biochemistry, 31(6), 839-847.
    Knapp, J.S., Jenkey, N.D., Townsley, C.C. 1996. The anaerobic biodegradation of diethanolamine by a nitrate reducing bacterium. Biodegradation, 7(3), 183-189.
    Knowles, G., Downing, A.L., Barrett, M. 1965. Determination of kinetic constants for nitrifying bacteria in mixed culture, with the aid of an electronic computer. Journal of general microbiology, 38(2), 263-278.
    Koch, G., Kleist, G. 2001. Application of scanning UV microspectrophotometry to localise lignins and phenolic extractives in plant cell walls. Holzforschung, 55(6), 563-567.
    Koeleman, J.G., Stoof, J., Biesmans, D.J., Savelkoul, P.H., Vandenbroucke-Grauls, C.M. 1998. Comparison of Amplified Ribosomal DNA Restriction Analysis, Random Amplified Polymorphic DNA Analysis, and Amplified Fragment Length Polymorphism Fingerprinting for Identification ofAcinetobacter Genomic Species and Typing ofAcinetobacter baumannii. Journal of clinical microbiology, 36(9), 2522-2529.
    Koito, T., Tekawa, M., Toyoda, A. 1998. A novel treatment technique for DMSO wastewater. Semiconductor Manufacturing, IEEE Transactions on, 11(1), 3-8.
    Koops, H.P., Pommerening‐Röser, A. 2001. Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species. FEMS Microbiology Ecology, 37(1), 1-9.
    Kowalchuk, G.A., Stephen, J.R. 2001. Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annual Reviews in Microbiology, 55(1), 485-529.
    Kraume, M., Drews, A. 2010. Membrane bioreactors in waste water treatment–Status and trends. Chemical engineering & technology, 33(8), 1251-1259.
    Kumar, M., Lee, P.Y., Fukusihma, T., Whang, L.M., Lin, J.G. 2012. Effect of supplementary carbon addition in the treatment of low C/N high-technology industrial wastewater by MBR. Bioresource Technology, 113, 148-153.
    Lee, D.S., Jeon, C.O., Park, J.M. 2001. Biological nitrogen removal with enhanced phosphate uptake in a sequencing batch reactor using single sludge system. Water Research, 35(16), 3968-3976.
    Lei, C.N., Whang, L.M., Chen, P.C. 2010. Biological treatment of thin-film transistor liquid crystal display (TFT-LCD) wastewater using aerobic and anoxic/oxic sequencing batch reactors. Chemosphere, 81(1), 57-64.
    Leininger, S., Urich, T., Schloter, M., Schwark, L., Qi, J., Nicol, G., Prosser, J., Schuster, S., Schleper, C. 2006. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature, 442(7104), 806-809.
    Liu, S., Yang, F., Gong, Z., Su, Z. 2008. Assessment of the positive effect of salinity on the nitrogen removal performance and microbial composition during the start-up of CANON process. Applied microbiology and biotechnology, 80(2), 339-348.
    Liu, W.T., Marsh, T.L., Cheng, H., Forney, L.J. 1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Applied and environmental microbiology, 63(11), 4516-4522.
    Logemann, S., Schantl, J., Bijvank, S., Loosdrecht, M., Kuenen, J.G., Jetten, M. 1998. Molecular microbial diversity in a nitrifying reactor system without sludge retention. FEMS Microbiology Ecology, 27(3), 239-249.
    Lomans, B.P., den Camp, H.J.O., Pol, A., Vogels, G.D. 1999. Anaerobic versus aerobic degradation of dimethyl sulfide and methanethiol in anoxic freshwater sediments. Applied and environmental microbiology, 65(2), 438-443.
    Loy, A., Lehner, A., Lee, N., Adamczyk, J., Meier, H., Ernst, J., Schleifer, K.-H., Wagner, M. 2002. Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Applied and environmental microbiology, 68(10), 5064-5081.
    Lueders, T., Chin, K.J., Conrad, R., Friedrich, M. 2001. Molecular analyses of methyl‐coenzyme M reductase α‐subunit (mcrA) genes in rice field soil and enrichment cultures reveal the methanogenic phenotype of a novel archaeal lineage. Environmental Microbiology, 3(3), 194-204.
    Manem, J., Trouve, E., Beaubien, A., Huyard, A., Urbain, V. 1993. Membrane bioreactor for urban and industrial wastewater treatment: Recent Advances. Proc. 66th WEF Ann. Conf., Anaheim, Calif.
    Marsh, T.L., Liu, W.T., Forney, L.J., Cheng, H. 1998. Beginning a molecular analysis of the eukaryal community in activated sludge. Water science and technology, 37(4), 455-460.
    Melin, T., Jefferson, B., Bixio, D., Thoeye, C., De Wilde, W., De Koning, J., Van der Graaf, J., Wintgens, T. 2006. Membrane bioreactor technology for wastewater treatment and reuse. Desalination, 187(1), 271-282.
    Mobarry, B.K., Wagner, M., Urbain, V., Rittmann, B.E., Stahl, D.A. 1996. Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. Applied and environmental microbiology, 62(6), 2156-2162.
    Moeseneder, M., Winter, C., Arrieta, J., Herndl, G. 2001. Terminal-restriction fragment length polymorphism (T-RFLP) screening of a marine archaeal clone library to determine the different phylotypes. Journal of Microbiological Methods, 44(2), 159-172.
    Mosier, A., Schimel, D., Valentine, D., Bronson, K., Parton, W. 1991. Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands. Nature, 350(6316), 330-332.
    Murakami-Nitta, T., Kirimura, K., Kino, K. 2003. Degradation of dimethyl sulfoxide by the immobilized cells of Hyphomicrobium denitrificans WU-K217. Biochemical engineering journal, 15(3), 199-204.
    Murakami-Nitta, T., Kurimura, H., Kirimura, K., Kino, K., Usami, S. 2002. Continuous degradation of dimethyl sulfoxide to sulfate ion by Hyphomicrobium denitrificans WU-K217. Journal of bioscience and bioengineering, 94(1), 52-56.
    Muratani, T. 1999. Biological treatment of wastewater containing DMSO.
    Muyzer, G., De Waal, E.C., Uitterlinden, A.G. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and environmental microbiology, 59(3), 695-700.
    Muyzer, G., Smalla, K. 1998. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek, 73(1), 127-141.
    Narrod, S.A., Jakoby, W.B. 1964. Metabolism of ethanolamine an ethanolamine oxidase. Journal of Biological Chemistry, 239(7), 2189-2193.
    Ndegwa, A.W., Wong, R.C., Chu, A., Bentley, L.R., Lunn, S.R. 2004. Degradation of monoethanolamine in soil. Journal of Environmental Engineering and Science, 3(2), 137-145.
    Ni, C., Lin, J. 2013. Industrial Wastewater Reclamation for Sustainable Development–Integration of Membrane Bio-Reactor Process. Applied Mechanics and Materials, 260, 715-720.
    Okabe, S., Oozawa, Y., Hirata, K., Watanabe, Y. 1996. Relationship between population dynamics of nitrifiers in biofilms and reactor performance at various C: N ratios. Water Research, 30(7), 1563-1572.
    Park, H.D., Noguera, D.R. 2004. Evaluating the effect of dissolved oxygen on ammonia-oxidizing bacterial communities in activated sludge. Water Research, 38(14), 3275-3286.
    Park, H.D., Regan, J.M., Noguera, D.R. 2002. Molecular analysis of ammonia-oxidizing bacterial populations in aerated-anoxic Orbal processes.
    Park, H.D., Wells, G.F., Bae, H., Criddle, C.S., Francis, C.A. 2006. Occurrence of ammonia-oxidizing archaea in wastewater treatment plant bioreactors. Applied and environmental microbiology, 72(8), 5643-5647.
    Park, S.J., Yoon, T.I., Bae, J.-H., Seo, H.J., Park, H.J. 2001. Biological treatment of wastewater containing dimethyl sulphoxide from the semi-conductor industry. Process Biochemistry, 36(6), 579-589.
    Pol, A., den Camp, H.J.O., Mees, S.G., Kersten, M.A., van der Drift, C. 1994. Isolation of a dimethylsulfide-utilizingHyphomicrobium species and its application in biofiltration of polluted air. Biodegradation, 5(2), 105-112.
    Puig, S., van Loosdrecht, M.C.M., Colprim, J., Meijer, S.C.F. 2008. Data evaluation of full-scale wastewater treatment plants by mass balance. Water Research, 42(18), 4645-4655.
    Purkhold, U., Pommerening-Röser, A., Juretschko, S., Schmid, M.C., Koops, H.-P., Wagner, M. 2000. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Applied and environmental microbiology, 66(12), 5368-5382.
    Randall, C.W., Barnard, J.L. 1992. Design and retrofit of wastewater treatment plants for biological nutrient removal. CRC Press.
    Rittmann, B., MacCarty, P. 2001. Environmental biotechnology: principles and applications. McGraw-Hill series in water resources and environmental engineering.
    Robertson, L.A., Van Niel, E.W., Torremans, R.A., Kuenen, J.G. 1988. Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaera pantotropha. Applied and environmental microbiology, 54(11), 2812-2818.
    Rotthauwe, J.H., Witzel, K.P., Liesack, W. 1997. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Applied and environmental microbiology, 63(12), 4704-4712.
    Scala, D.J., Kerkhof, L.J. 2000. Horizontal heterogeneity of denitrifying bacterial communities in marine sediments by terminal restriction fragment length polymorphism analysis. Applied and environmental microbiology, 66(5), 1980-1986.
    Scarlett, F.A., Turner, J. 1976. Microbial metabolism of amino alcohols. Ethanolamine catabolism mediated by coenzyme B12-dependent ethanolamine ammonia-lyase in Escherichia coli and Klebsiella aerogenes. Journal of general microbiology, 95(1), 173-176.
    Schäfer, H., Myronova, N., Boden, R. 2010. Microbial degradation of dimethylsulphide and related C1-sulphur compounds: organisms and pathways controlling fluxes of sulphur in the biosphere. Journal of experimental botany, 61(2), 315-334.
    Schmidt, I., Bock, E. 1997. Anaerobic ammonia oxidation with nitrogen dioxide by Nitrosomonas eutropha. Archives of microbiology, 167(2-3), 106-111.
    Schmidt, I., Sliekers, O., Schmid, M., Bock, E., Fuerst, J., Kuenen, J.G., Jetten, M.S., Strous, M. 2003. New concepts of microbial treatment processes for the nitrogen removal in wastewater. FEMS microbiology reviews, 27(4), 481-492.
    Schramm, A., de Beer, D., van den Heuvel, J.C., Ottengraf, S., Amann, R. 1999. Microscale Distribution of Populations and Activities ofNitrosospira and Nitrospira spp. along a Macroscale Gradient in a Nitrifying Bioreactor: Quantification by In Situ Hybridization and the Use of Microsensors. Applied and environmental microbiology, 65(8), 3690-3696.
    Shammas, N.K. 1986. Interactions of temperature, pH, and biomass on the nitrification process. Journal (Water Pollution Control Federation), 52-59.
    Sharma, B., Ahlert, R. 1977. Nitrification and nitrogen removal(in waste water treatment). Water Research, 11(10), 897-925.
    Shuai, Y., Fenglin, Y., Zhimin, F., RuiBo, L. 2009. Comparison between a moving bed membrane bioreactor and a conventional membrane bioreactor on organic carbon and nitrogen removal. Bioresource Technology, 100(8), 2369-2374.
    Simo, J. 1998. Numerical analysis and simulation of plasticity. Handbook of numerical analysis, 6, 183-499.
    Smet, E., Van Langenhove, H., Maes, K. 2000. Abatement of high concentrated ammonia loaded waste gases in compost biofilters. Water, air, and soil pollution, 119(1-4), 177-190.
    Smith, P., Coackley, P. 1984. Diffusivity, tortuosity and pore structure of activated sludge. Water Research, 18(1), 117-122.
    Stephenson, T., Judd, S., Jefferson, B., Brindle, K. 2000. Membrane Bioreactor for Wastewater Treatment. IWA Publishing.
    Stouthamer, A.H. 1988. Dissimilatory reduction of oxidized nitrogen compounds. Biology of anaerobic microorganisms, 245-303.
    Suylen, G., Kuenen, J. 1986. Chemostat enrichment and isolation of Hyphomicrobium EG. Antonie van Leeuwenhoek, 52(4), 281-293.
    U.S.E.P.Agency. 1993. Manual:Nitrogen Control. U.S. Environmental Protection Agency.
    Urakami, T., Araki, H., Oyanagi, H., Suzuki, K.I., Komagata, K. 1990. Paracoccus aminophilus sp. nov. and Paracoccus aminovorans sp. nov., which utilize N, N-dimethylformamide. International journal of systematic bacteriology, 40(3), 287-291.
    van der Maarel, M.J., Artz, R.R., Haanstra, R., Forney, L.J. 1998. Association of marine archaea with the digestive tracts of two marine fish species. Applied and environmental microbiology, 64(8), 2894-2898.
    Vannelli, T., Logan, M., Arciero, D.M., Hooper, A.B. 1990. Degradation of halogenated aliphatic compounds by the ammonia-oxidizing bacterium Nitrosomonas europaea. Applied and environmental microbiology, 56(4), 1169-1171.
    Versalovic, J., Shortridge, D., Kibler, K., Griffy, M.V., Beyer, J., Flamm, R.K., Tanaka, S.K., Graham, D.Y., Go, M.F. 1996. Mutations in 23S rRNA are associated with clarithromycin resistance in Helicobacter pylori. Antimicrobial agents and chemotherapy, 40(2), 477-480.
    Voytek, M., Ward, B. 1995. Detection of ammonium-oxidizing bacteria of the beta-subclass of the class Proteobacteria in aquatic samples with the PCR. Applied and environmental microbiology, 61(4), 1444-1450.
    Wagner, M., Rath, G., Amann, R., Koops, H.-P., Schleifer, K.-H. 1995. In situ Identification of Ammonia-oxidizing Bacteria. Systematic and applied microbiology, 18(2), 251-264.
    Watson, S.W. 1971. Taxonomic Considerations of the Family Nitrobacteraceae Buchanan Requests for Opinions. International journal of systematic bacteriology, 21(3), 254-270.
    Watson, S.W., Bock, E., Valois, F.W., Waterbury, J.B., Schlosser, U. 1986. Nitrospira marina gen. nov. sp. nov.: a chemolithotrophic nitrite-oxidizing bacterium. Archives of microbiology, 144(1), 1-7.
    Whang, L.M., Wu, Y.J., Lee, Y.C., Chen, H.W., Fukushima, T., Chang, M.Y., Cheng, S.S., Hsu, S.F., Chang, C.H., Shen, W. 2012. Nitrification performance and microbial ecology of nitrifying bacteria in a full-scale membrane bioreactor treating TFT-LCD wastewater. Bioresource Technology.
    Whang, L.M., Yang, K., Yang, Y., Han, Y., Chen, Y., Cheng, S. 2009. Microbial ecology and performance of ammonia oxidizing bacteria (AOB) in biological processes treating petrochemical wastewater with high strength of ammonia: effect of Na2CO3 addition. Water science and technology, 59(2), 223-231.
    Whang, L.M., Yang, Y.F., Huang, S.J., Cheng, S.S. 2008. Microbial ecology and performance of nitrifying bacteria in an aerobic membrane bioreactor treating thin-film transistor liquid crystal display wastewater. Water science and technology: a journal of the International Association on Water Pollution Research, 58(12), 2365.
    Wood, P.M. 1986. Nitrification as a bacterial energy source.
    Wrage, N., Velthof, G., Van Beusichem, M., Oenema, O. 2001. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biology and Biochemistry, 33(12), 1723-1732.
    Wu, Y.J., Whang, L.M., Chang, M.Y., Fukushima, T., Lee, Y.C., Cheng, S.S., Hsu, S.F., Chang, C.H., Shen, W., Yang, C.Y. 2013. Impact of Food to Microorganism (F/M) Ratio and Colloidal Chemical Oxygen Demand on Nitrification Performance of a Full-Scale Membrane Bioreactor Treating Thin Film Transistor Liquid Crystal Display Wastewater. Bioresource Technology.
    Wu, Y.J., Whang, L.M., Huang, S.J., Yang, Y.F., Lei, C.N., Cheng, S.S. 2008. Evaluation of performance and microbial ecology of sequencing batch reactor and membrane bioreactor treating thin-film transistor liquid crystal display wastewater. Water science and technology, 58(5), 1085-1093.
    Yang, S., Yang, F., Fu, Z., Lei, R. 2009. Comparison between a moving bed membrane bioreactor and a conventional membrane bioreactor on organic carbon and nitrogen removal. Bioresource Technology, 100(8), 2369.
    You, S., Hsu, C., Chuang, S., Ouyang, C. 2003. Nitrification efficiency and nitrifying bacteria abundance in combined AS-RBC and A2O systems. Water Research, 37(10), 2281-2290.
    Zhang, L., Hirai, M., Shoda, M. 1991. Removal characteristics of dimethyl sulfide, methanethiol and hydrogen sulfide by Hyphomicrobium sp. 155 isolated from Peat Biofilter. Journal of fermentation and bioengineering, 72(5), 392-396.
    王啟秀、葉堂宇、陳美玲、蔡秉育. 2008. 臺灣發展平面顯示器產業競爭分析.
    李展能. 2008. TFT-LCD有機廢水在好氧、缺氧及厭氧環境下分解機制之研究. 國立成功大學環境工程學系碩士論文.
    李雅菁. 2010. 針對TFT-LCD製程廢水實廠進行硝化效能評估與氨氧化菌群生態之研究. 國立成功大學環境工程學系碩士論文.
    阮文昌. 2003. 薄膜生物反應槽積垢特性之研究. 朝陽科技大學環境工程與管理系碩士論文.
    周連智. 2012. 應用流體化結晶床處理含磷廢水之研究—以TFT-LCD廠為例. 國立中央大學環境工程研究所碩士論文.
    周裕然. 2002. 多段進流去氮除磷系統穩動態處理及控制特性之研究. 國立中央大學環境工程研究所博士論文.
    林宏霖. 2006. 探討生物分解光電產業製程廢水之反應動力特性研究. 國立成功大學環境工程學系碩士論文.
    姜婷毓. 2009. 無機碳對氨氧化菌族群及其硝化反應表現之影響探討. 國立成功大學環境工程研究所碩士論文.
    洪仁陽、鄒文源、張王冠. 2001. MBR模型廠處理LCD製程廢水之案例研究. 產業環保工程實務技術研討會論文集.
    倪振鴻. 2003. 光電業廢水處理與回收案例介紹. 光電及半導體業廢水及回收新技術研討會.
    袁熙隆. 2006. 都巿與畜牧廢水生物處理系統硝化菌生態與硝化效能相關性之研究. 國立成功大學環境工程系研究所碩士論文.
    康美祝. 2002. MBR 除氮系統特性之研究. 國立中央大學環境工程研究所碩士論文.
    張王冠、鄒文源、張敏超、胡衍榮. 2002. 膜離生物反應器廢水處理應用案例探討. 產業環保工程實務技術研討會論文集.
    張婷婷. 2009. 除氮系統中與無氧氨氧化菌共存之微生物組成分析. 國立中興大學環境工程學研究所碩士學位論文.
    陳廷光、陳重男、倪振鴻. 2002. GREEN MEMBIOR®生物薄膜程序處理TFT-LCD製程有機廢水之研究. 第二十七屆廢水處理技術研討會論文.
    陳柏均. 2010. 光電產業TFT-LCD製程有機廢水生物降解機制及微生物生態變化之探討. 國立成功大學環境工程學系碩士論文.
    黃淑君. 2006. 不織布薄膜反應槽好氧生物分解TFT-LCD 製程有機廢水程序功能及生態變化之研究. 國立成功大學環境工程學系碩士論文.
    楊盛行. 1995. 農業與環境保育. 台北華香園出版社.

    無法下載圖示 校內:2023-07-09公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE