簡易檢索 / 詳目顯示

研究生: 王士銘
Wang, Shih-Ming
論文名稱: 利用有限氣象參數評估蒸發散量之研究
Using limited weather to estimate the Evaportranspiration
指導教授: 李振誥
Lee, Cheng-Haw
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 85
中文關鍵詞: 蒸發散量Penman-Monteith輻射量估算法溫度估算法
外文關鍵詞: Evapotranspiration, Penman-Monteith, Radiation method, Temperature method
相關次數: 點閱:122下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 蒸發散量(Evapotranspiration,簡稱ET)是水文循環基本要素之一,在水資源評估與管理上是相當重要的因子。在國際上,常使用Penman-Monteith法來推估蒸發散量,然而此法會需要用到溫度、輻射量、相對濕度及風速等多種氣象參數,而氣象氣象站的建置與維護需要經費的維持,本研究利用有限或單一的氣象參數推估蒸發散量。本研究主要目的有:(1)利用Penman-Monteith法推估蒸發散量,比較在不同氣象參數缺漏的情況下,使用FAO公布的經驗式替代;(2)選用以輻射量與溫度為主的方法,與Penman-Monteith法做比較,進行推估蒸發散量;(3)修正各估算式之經驗係數,討論在研究地區之適用性。

    本研究以台南氣象站與台北氣象站為研究區域,選用Penman-Monteith法與6種以輻射量為主之估算式,有Makkink(1957)、Turc(1961)、Jensen-Haise(1963)、Priestley-Taylor(1972)、Doorenbos-Pruit(1977)及Abtew(1996)等,及4種以溫度為主之估算式,分別為Thomthwaite(1948)、Blaney-Criddle(1959)、Hamon(1961)及 Linacre(1977)等方法來推估蒸發散量並比較其差異性。

    本研究結果顯示,當風速資料缺漏或是不足時,對於使用Penman-Monteith法推估蒸發散量影響不大。在經驗係數修正前,輻射量估算法以Turc(1961)表現最好,RMSE在台南氣象站與台北氣象站分別為0.23與0.27,溫度估算法以Linacre(1977)法表現最好,RMSE在台南氣象站與台北氣象站分別為0.63與1.12。整體而言,輻射量估算法皆比溫度估算法評估更準確。最後,本研究進行經驗係數修正後,輻射量法以Makkink(1957)、Turc(1961)與Doorenbos-Pruit(1977)法表現較佳。溫度法則以Thomthwaite(1948)法表現較好。因此本研究建議日後推估蒸發散量,可使用Makkink(1957)、Turc(1961)或Thomthwaite(1948)法進行評估。

    Evapotranspiration (ET) is one of the basic elements of the hydrological cycle. The Penman-Monteith method is the globally widespread to estimate evapotranspiration method. However, this method needs to use a variety of meteorological parameters, such as temperature, radiation, relative humidity and wind speed, etc. Besides, to build meteorological weather station and maintenance need funding. Therefore, the study is to use limited or single meteorological parameters to estimate evapotranspiration. The main purpose of this study are : (1) using FAO Penman-Monteith replacing experience function to estimate evapotranspiration when the meteorological parameters miss; (2) Using 6 radiation-based and 4 temperature-based approaches to estimate evapotranspiration and then compare the results with the Penman-Monteith method; (3) to modify the empirical factor for each approach and discuss the applicability of the study region.

    The results of this study showed that when the wind speed data missed or lack, using the Penman-Monteith method to estimate evapotranspiration the results just have a little effect. Before the experience factor correction, the best performance of the radiation-based method is Turc(1961). the best performance of the temperature-based method is Linacre (1977). On the whole, the radiation-based methods are more accurate assessment than the temperature-based methods. Finally, this study was corrected the experience factor, and the better performance of the radiation-based methods are Makkink(1957), Turc(1961) and Doorenbos-Pruit(1977) respesticely. The better performance of the Temperature-based methods Thomthwaite(1948) method performed better. Therefore, this study suggests Makkink (1957), Turc (1961) and Thomthwaite (1948) method should be the better methods for estimating evapotranspiration.

    目錄 中英文摘要 I 誌謝 VIII 目錄 IX 表目錄 XI 圖目錄 XII 符號說明 XIV 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究流程 2 第二章 文獻回顧 4 2.1潮濕地區使用之蒸發散經驗式 4 2.2台灣地區常用之經驗式 7 第三章 理論模式 10 3.1 Penman-Monteith法 10 3.2 輻射量為基礎之方法 16 3.3 溫度為基礎之方法 20 3.4 統計檢定 23 第四章 區域概述與資料收集 25 4.1 氣溫 25 4.2 風速 26 4.3 相對濕度 27 4.4 淨輻射量 28 4.5 日照時數 29 第五章 結果與討論 30 5.1 Penman-Monteith法推估之蒸發散量 30 5.2 各蒸發散經驗式估算蒸發散量之結果 39 5.3 估算式係數修正 62 第六章 結論與建議 75 參考文獻 77 表目錄 表4-1 氣象站地理位置及站況 25 表5-5 評估蒸發散量之不同模式比較表 31 表5-6 不同模式計算台南氣象站月蒸發散量特性之比較表(mm/day) 32 表5-7 台南氣象站各模式計算月蒸發散量與PM1比較的結果 34 表5-8 不同模式計算台北氣象站月蒸發散量特性之比較表(mm/day) 35 表5-9 台北氣象站各模式計算月蒸發散量與PM1比較的結果 37 表5-10 6種輻射量估算法所使用之主要參數 40 表5-11 輻射量估算法計算台南氣象站月平均蒸發散量之特性(mm/day) 41 表5-12 台南氣象站各種公式計算月平均蒸發散量與Penman-Monteith比較的結果 44 表5-13 輻射量估算法計算台北氣象站月平均蒸發散量之特性(mm/day) 46 表5-14 台北氣象站各種公式計算月平均蒸發散量與Penman-Monteith比較的結果 49 表5-15 4種溫度估算法所使用之主要參數 51 表5-16 溫度估算法計算台南氣象站月平均蒸發散量之特性(mm/day) 52 表5-17 台南氣象站各種公式計算月平均ET與Penman-Monteith比較的結果 55 表5-18 溫度估算法計算台北氣象站月平均蒸發散量之特性(mm/day) 56 表5-19 台北氣象站各種公式計算月平均ET 與Penman-Monteith比較的結果 59 表5-20 輻射能估算法方程式經驗參數修正前後比較表 63 表5-21 輻射能估算法模式評估指標值前後及驗證比較表 64 表5-22 溫度估算法方程式經驗參數修正前後比較表 69 表5-23 溫度估算法模式評估指標值前後及驗證比較表 70 圖目錄 圖1-1 研究流程圖 3 圖4-1 1961年~2013年之月平均溫度變化圖 26 圖4-2 1961年~2013年之月平均風速變化圖 26 圖4-3 1961年~2013年 月平均相對濕度變化圖 27 圖4-4 1961年~2013年 月平均飽和水汽壓力變化圖 28 圖4-5 1961年~2013年 月平均實際水汽壓力變化圖 28 圖4-6 1961年~2013年 月平均淨輻射量變化圖 29 圖4-7 1961年~2013年 月平均日照時數變化圖 29 圖5-1 台南氣象站各PM模式計算之月平均蒸發散量 32 圖5-2 台南氣象站各PM模式評估月平均蒸發散量與PM1比較圖 (a)PM2 (b) PM3 (c) PM4 (d) PM5 33 圖5-3 台南氣象站統計檢定比較圖 (a)MBE (b)RMSE 34 圖5-4 各PM模式計算之月平均蒸發散量-台北氣象站 35 圖5-5 台北氣象站各PM模式評估月平均蒸發散量與PM1比較圖 (a)PM2 (b) PM3 (c) PM4 (d) PM5 36 圖5-6 台北氣象站統計檢定比較圖 (a)MBE (b)RMSE 37 圖5-7 台北氣象站輻射量比較 38 圖5-8 台北氣象站相對溼度比較 38 圖5-9 PM與PM6模式計算之月平均蒸發散量 (a)台南氣象站 (b)台北氣象站 39 圖5-10 輻射量估算法之台南氣象站蒸發散量月平均 42 圖5-11 台南氣象站各輻射量估算法評估蒸發散量與Penman-Monteith比較圖 43 圖5-12 台南氣象站統計檢定比較圖 (a)MBE (b)RMSE 45 圖5-13 輻射量估算法之台北氣象站蒸發散量月平均 47 圖5-14 台北氣象站各輻射量估算法評估蒸發散量與Penman-Monteith比較圖 48 圖5-15 台北氣象站統計檢定比較圖 (a)MBE (b)RMSE 50 圖5-16 輻射量比較圖 (a)台南氣象站 (b) 台北氣象站 51 圖5-17 溫度估算法之台南氣象站蒸發散量月平均 53 圖5-18 台南氣象站各溫度估算法評估蒸發散量與Penman-Monteith比較圖 54 圖5-19 台南氣象站統計檢定比較圖 (a)MBE (b)RMSE 55 圖5-20 溫度估算法之台北氣象站蒸發散量1961~2013年各月平均 57 圖5-21 台北氣象站各溫度估算法評估蒸發散量與Penman-Monteith比較圖 58 圖5-22 台北氣象站統計檢定比較圖 (a)MBE (b)RMSE 59 圖5-23 平均露點溫度 60 圖5-24 一年中每月之年日照百分率 61 圖5-25 台南氣象站統計檢定比較圖(修正後) (a)MBE (b)RMSE 65 圖5-26 台南氣象站統計檢定比較圖(驗證) (a)MBE (b)RMSE 66 圖5-27 台北氣象站統計檢定比較圖(修正後) (a)MBE (b)RMSE 67 圖5-28 台北氣象站統計檢定比較圖(驗證) (a)MBE (b)RMSE 68 圖5-29 台南氣象站統計檢定比較圖(修正後) (a)MBE (b)RMSE 71 圖5-30 台南氣象站統計檢定比較圖(驗證後) (a)MBE (b)RMSE 72 圖5-31 台北氣象站統計檢定比較圖(修正後) (a)MBE (b)RMSE 73 圖5-32 台北氣象站統計檢定比較圖(驗證) (a)MBE (b)RMSE 74

    1. Abtew, W. (1996), ‘‘Evapotranspiration measurements and modeling for three wetland systems in south Florida.’’, Water Resources Bulletin, 32(3) pp. 465-473
    2. Abtew, W. (2001), “Evaporation Estimation for Lake Okeechobee in South Florida.” , Journal of Irrigation and Drainage Engineering, 127(3) pp.140-147.
    3. Abtew, W., and Obeysekera, J. (1995), ‘‘Lysimeter study of evapotranspiration of cattails and comparison of three estimation methods.’’, Transactions of the American Society of Agricultural Engineers, 38(1) pp.121-129.
    4. Alkaeed, O., Flores, C., Jinno, K., and Tsutsumi, A. (2006), ‘‘Comparison of Several Reference Evapotranspiration Methods for Itoshima Peninsula Area, Fukuoka, Japan’’, Memoirs of the Faculty of Engineering, Kyushu University, 66(1) pp. 1-14.
    5. Allen, R. G. (2003), ‘‘REF-ET user’s guide. ’’, University of Idaho Kimberly Research Stations, Kimberly..
    6. Allen, R. G., Periera, L. S., Raes, D., and Smith, M. (1998). “Crop evapotranspiration: Guideline for computing cropwater requirement.”, FAO Irrigation and drainage paper 56. FAO, Rome, 300 pp. 6541.
    7. Amatya, D. M., Skaggs, R. W., and Gregory, J. D. (1995), “Comparison of methods for estimating REF-ET. ”, Journal of Irrigation and Drainage Engineering, 121(6) pp.427-435.
    8. Arasteh, P. D., and Tajrishy, M. (2008). “Calibrating Priestley-Taylor Model to Estimate Open Water Evaporation under Regional Advection Using Volume Balance Method-Case Study: Chahnimeh Reservoir, Iran.”, Journal of Applied Sciences, 8(22).
    9. Blaney, H. F., and Criddle, W. D. (1950), “Determining water requirements in irrigated areas from climatological and irrigation data.”, Soil Conservation Service Technical Paper 96. Soil Conservation Service, U.S. Dept. of Agriculture: Washington, D.C.
    10. Cai, J. B., Liu, Y., Lei, T. W., and Pereira, L. S. (2007). “Estimating reference evapotranspiration with the FAO Penman-Monteith equation using daily weather forecast messages.”, Agricultural and Forest Meteorology, 145(1-2) pp. 22-35.
    11. Chattopadhyay, S., Jain, R., and Chattopadhyay, G. (2009), “Estimating potential evaptranspiration from limited weather data over Ganetic West Bengal, India: a neurocomputing approach.”, Meteorological Applications, 16(3) pp.403-411.
    12. Chen, S. B., Liu, Y. F., and Thomas, A. (2006), “Climatic change on the Tibetan Plateau: Potential evapotranspiration trends from 1961-2000”, Climatic Change, 76(3-4) pp.291-319.
    13. Chiew, F. H. S., Kamaladasa, N. N., Malano, H. M., and McMahon, T. A. (1995), “Penman-Monteith, FAO-24 reference crop evapotranspiration and class-A pan data in Australia.”, Agricultural Water Management, 28 pp. 9–21.
    14. Cristea, N. C., Kampf, S. K., and Burges, S. J. (2013), “Revised Coefficients for Priestley-Taylor and Makkink-Hansen Equations for Estimating Daily Reference Evapotranspiration.”, Journal of Hydrologic Engineering, 18(10) pp.1289-1300.
    15. Cruff, R. W., Thompson, T. H. (1967), “comparison of methods of estimating potential evapotranspiration from climatological data in arid and subhumid environments.”, USGS water-supply paper, 1839 pp. 28.
    16. Doorenbos, J., Pruitt W. O. (1977), “Guidelines for predicting crop water requirements.”, FAO Irrigation and Drainage Paper 24. Food and Agriculture Organization. Rome.
    17. Dockter, D., Center, W. C., and Boise, I. (1994). “Computation of the 1982 Kimberly-Penman and the Jensen-Haise evapotranspiration equations as applied in the US Bureau of Reclamation's Pacific Northwest AgriMet Program: US Bureau of Reclamation, Pacific Northwest Region.”, Water Conservation Center.
    18. Drexler, J. Z., Snyder, R. L., Spano, D., and Paw, K. T. U. (2004), “A review of models and micrometeorological methods used to estimate wetland evapotranspiration”, Hydrology Process, 18(11) pp. 2071–2101.
    19. Fisher, J. B., DeBiase, T. A., Qi, Y., Xu, M., and Goldstein, A. H. (2005), “Evapotranspiration models compared on a Sierra Nevada forest ecosystem.”, Environmental Modelling and Software, 20(6) pp. 783-796.
    20. Fontenot, R. L. (2004). “An evaluation of reference evapotranspiration models in Louisiana.”, Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Natural Sciences In The Interdepartmental Program of Natural Sciences by Royce Landon Fontenot BS, Louisiana State University.
    21. Fooladmand, H. R., Zandilak, H., and Ravanan, M. H. (2008). “Comparison of different types of Hargreaves equation for estimating monthly evapotranspiration in the south of Iran.”, Archives of Agronomy and Soil Science, 54(3), pp. 321-330.
    22. Garcia, M., Raes, D., Allen, R., and Herbas, C. (2004), “Dynamics of reference evapotranspiration in the Bolivian highlands (Altiplano).”, Agricultural and Forest Meteorology, 125(1-2) pp. 67–82.
    23. Gavilan, P., Lorite, I. J., Tornero, S., and Berengena, J. (2006), “Regional calibration of Hargreaves equation for estimating reference ET in a semiarid environment.”, Agricultural Water Management, 81(3) pp. 257–281.
    24. Gavilan, P., Berengena, J., and Allen, R. G. (2007), “Measuring versus estimating net radiation and soil heat flux: Impact on Penman–Monteith reference ET estimates in semiarid regions”, Agricultural Water Management, 89(3) pp, 275–286.
    25. Gebhart, S., Radoglou, K., Chalivopoulos, G., and Matzarakis, A. (2013), “Evaluation of potential evapotranspiration in central Macedonia by EmPEst.”, Advances in Meteorology, Climatology and Atmospheric Physics, pp. 451-456..
    26. George, B. A., Reddy, B. R. S., Raghuwanshi, N. S., and Wallender, W. W. (2002), “Decision Support System for Estimating Reference Evapotranspiration.”, Journal of Irrigation and Drainage Engineering, 128(1) pp. 1-10.
    27. Gocic, M., and Trajkovic, S. (2010), “Software for estimating reference evapotranspiration using limited weather data.”, Computers and Electronics in Agriculture, 71(2) pp. 158-162.
    28. Gudulas, K., Voudouris, K., Soulios, G., and Dimopoulos, G. (2013), “Comparison of different methods to estimate actual evapotranspiration and hydrologic balance”, Desalination and Water Treatment, 51(13-15 pp. 2945-2954.
    29. Hamon, W. R. (1961), “Estimating potential evapotranspiration.”, Journal of Hydraulics Division., Proceedings of the American Societh of Civil Engineers, 87 pp.107-120.
    30. Hansen, V. E., Israelson, O., and Stringham, G. E. (1980), “Irrigation Principles and Practices.”, 4th edition, John Wiley and Sons, Inc.
    31. Harbeck, G. E. (1962). “A practical field technique for measuring reservoir evaporation utilizing mass-transfer theory.”, US Government Printing Office.
    32. Irmak, S., Irmak, A., Allen, R. G., and Jones, J. W. (2003a), “Solar and net radiation-based equations to estimate reference evapotranspiration in humid climates.”, Journal of Irrigation and Drainage Engineering, 129(5) pp. 336-347.
    33. Irmak, S., Allen, R. G., and Whitty, E. B. (2003b), “Daily grass and alfalfa reference evapotranspiration estimates and alfalfa-to-grass evapotranspiration ratios in Florida.”, Journal of Irrigation and Drainage Engineering, 129(5) pp. 360-370.
    34. Jabloun, M., Sahli Erratum, A. (2008), “Evaluation of FAO-56 methodology for estimating reference evapotranspiration using limited climatic data: Application to Tunisia.”, Agricultural Water Management, 98(4) pp. 731.
    35. Jensen, M. E., Burman, R. D., and Allen, R. G. (1990), “Evapotranspiration and irrigation water requirements.”, ASCE manual and reports onengineering practice no. 70. ASCE, New York.
    36. Jensen, M. E., and Haise, H. R. (1963), “Estimation of evapotranspiration from solar radiation.”, Journal of Irrigation and Drainage Division, 89 pp. 15-41.
    37. Lin, C. T., Chen, H. H., Kume, T., and Chiou, C. R. (2010), “Comparison of potential water supply and demand in Taiwan”, Water International, 35(2) pp. 165-176.
    38. Linacre, E. T. (1977), “A simple formula for estimating evaporation rates in various climates, using temperature data alone.”, Agricultural Meteorology, 18(6) pp. 409-424.
    39. Lu, J. B., Sun, G., McNulty, S. G., and Amatya, D. M. (2005), “A comparison of six potential evapotranspiration methods for regional use in the southeastern United States.”, Journal of the American Water Resources Association, 41(3) pp. 621-633
    40. Makkink, G. F. (1957), “Testing the Penman formula by means of lysimeters.”, Journal of the Institution of Water Engineering, 11(3) pp. 277-288.
    41. Monteith, J. L. (1981), “Evaporation and surface temperature.”, Quarterly Journal of the Royal Meteorological Society, 107(451) pp. 1-27.
    42. Monteith, J., and Unsworth, M. (1990), “Principles of Environmental Physics.”, Edward Arnold, London, 291.
    43. Ngongondo, C., Xu, C. Y., Tallaksen, L. M., and Alemaw, B. (2013), “Evaluation of the FAO Penman-Montheith, Priestley-Taylor and Hargreaves models for estimating reference evapotranspiration in southern Malawi.”, Hydrology Research, 44(4) pp.706-722.
    44. Penman, H. L. (1948), “Natural evaporation from open water, bare soil, and grass.”, Proceedings of the Royal Society A, 193(1032) pp. 120-146
    45. Pereira, A. R., and Pruitt, W. O. (2004), “Adaptation of the Thornthwaite Scheme for Estimating Daily Reference Evapotranspiration.”, Agricultural Water Management, 66 pp. 251-257.
    46. Pereira, A. R., Green, S., and Nova, N. A. (2006). “Penman-Monteith reference evapotranspiration adapted to estimate irrigated tree transpiration.”, Agricultural Water Management, 83(1-2) pp. 153-161.
    47. Popova, Z., Kercheva, M., and Pereira, L. S. (2006), “Validation of the FAO methodology for computing ET with limited data application to south Bulgaria.”, Journal of Irrigation and Drainage Engineering, 55(2) pp.201-215.
    48. Priestley, C., and Taylor, R. (1972), “On the assessment of surface heat flux and evaporation using large-scale parameters.”, Monthly Weather Review, 100(2) pp. 81-92.
    49. Rahimikhoob, A., Behbahani, M. R., and Fakheri, J. (2012), “An evaluation of four reference evapotranspiration models in a subtropical climate.”, Water Resources Management, 26(10) pp. 2867-2881.
    50. Sabziparvar, A. A., and Tabari, H. (2010), “Regional estimation of reference evapotranspiration in arid and semi-arid regions.”, Journal of Irrigation and Drainage Engineering, 136(10) pp. 724-731.
    51. Sabziparvar, A. A., Mirmasoudi, S. H., Tabari, H., Nazemosadat, M. J., and Maryanaji, Z. (2011), “ENSO teleconnection impacts on reference evapotranspiration variability in some warm climates of Iran.”, International Journal of Climatology, 31(11) pp. 1710-1723.
    52. Sentelhas, P. C., Gillespie, T. J., and Santos, E. A. (2010), “Evaluation of FAO Penman-Monteith and alternative methods for estimating reference evapotranspiration with missing data in Southern Ontario,Canada.”, Agricultural Water Management, 97(5) pp. 635-644.
    53. Singh, V. P., and Xu, C. Y. (1997),“Evaluation and generalization of 13 mass-transfer equations for determining free water evaporation.”, Hydrological Processes, 11(3) pp. 311–323.
    54. Sumner, D. M., and Jacobs, J. M. (2005), “Utility of Penman-Monteith, Priestley-Taylor, reference evapotranspiration, and Pan evaporation methods to estimate pasture evapotranspiration.”, Journal of Hydrology, 308(1-4) pp. 81-104.
    55. Tabari, H., and Talaee, P. H. (2011), “Local calibration of the Hargreaves and Priestley-Taylor equations for estimating reference evapotranspiration in arid and cold climates of Iran based on the Penman-Monteith model.”, Journal of Hydrologic Engineering, 16(10) pp. 837-845.
    56. Tabari, H., Grismer, M. E., and Trajkovic, S. (2013), “Comparative analysis of 31 reference evapotranspiration methods under humid conditions”, Irrigation Science, 31(2) pp. 107-117.
    57. Temesgen, B., Eching, S., Davidoff, B., and Frame, K. (2005), “Comparison of some reference evapotranspiration equations for California.”, Journal of Irrigation and Drainage Engineering, 131(1) pp. 73-84.
    58. Thornthwaite, C. W. (1948), “An approach toward a rational classification of climate.”, Geographical Review, 38(1) pp. 55-94.
    59. Trajkovic, S. (2005), “Temperature-based approaches for estimating reference evapotranspiration.”, Journal of Irrigation and Drainage Engineering, 133(4) pp. 316-323.
    60. Trajkovic, S. (2007), “Hargreaves versus Penman-Monteith under humid conditions.”, Journal of Irrigation and Drainage Engineering, 133(1) pp. 38-42.
    61. Trajkovic, S., and Kolakovic, S. (2009), “Evaluation of reference evapotranspiration equations under humid conditions.”, Water Resources Management, 23(14) pp. 3057-3067.
    62. Tukimat, N. N. A., Harun, S., and Shahid, S. (2012), “Comparison of different methods in estimating potential evapotranspiration at Muda Irrigation Scheme of Malaysia.”, Journal of Agriculture and Rural Development in the Tropics and Subtropics, 113(1) pp. 77-85.
    63. Turc, L. (1961), “Evaluation des besoins en eau d’irrigation, evapotranspiration potentielle, formule climatique simplifee et mise a jour.”, Annal Agron , 12(1) pp. 13-49.
    64. Wang, Y. M., Namaona, W., Traore, S., and Zhang, Z. C. (2009), “Seasonal temperature-based models for reference evapotranspiration estimation under semi-arid condition of Malawi.”, African Journal of Agricultural Research, 4(9) pp. 878-886.
    65. Xu, C. Y., and Singh, V. P. (2000),“Evaluation and generalisation of radiation-based equations for calculating evaporation.”, Water Resources Management, 14(2) pp. 339-349.
    66. Xu, C. Y., and Singh, V. P. (2001),“Evaluation and generalization of temperature-based methods for calculating evaporation.”, Water Resources Management, 15(2) pp. 305-319.
    67. Xu, C. Y., Singh, V. P. (2002),“Cross comparison of empirical equations for calculating potential evapotranspiration with data from Switzerland.”, Water Resources Management, 16(3) pp. 197-219.
    68. Xu, C. Y., and Chen, D. ( (2005), “Comparison of seven models for estimation of evapotranspiration and groundwater recharge using lysimeter measurement data in Germany”, Hydrological Processes, 19(18) pp.3717-3734
    69. 甘俊二、陳清田、陳焜耀 (1996a),「臺灣地區作物需水量推估模式之合適性研究」,中國農業工程學報,第42卷,第2期,第8-19頁。
    70. 甘俊二、陳清田、陳鈞華 (1996b),「台灣區域性旱作物需水量之推估」,85年度農業工程研討會論文集,第99-105頁。
    71. 申雍、黃學文 (1996),「台灣西南部地區潛在蒸發散量之估算與應用」,中華農業氣象,第3卷,第3期,第141-149頁。
    72. 宋易倫、黃振昌 (2009),「蒸發散量Penman-Monteith估算方程式蒸汽壓力差計算式檢測與評估」,農業工程學報,第55卷,第2期,第1-27頁。
    73. 邱永和 (1977),「區域蒸散量估算問題-以台灣西南地區為例」,氣象學報,第23卷,第2期,第34-42頁。
    74. 邱湞瑋(2006),「勢能蒸發散計算方法應用於中海拔地區之比較」,國立台灣大學森林環境暨資源學研究所碩士論文。
    75. 施鈞程 (2003),「台灣森林集水區之蒸發散量推估」,國立中興大學水土保持學系碩士論文。
    76. 夏禹九 (1980),「集水區蒸發散量之初步研究」,農業工程學報,第26卷,第1期,第50-55頁。
    77. 張建勛、甘俊二 (1965),「作物灌溉需水量之研究」,農業工程學報,第11卷,第2期,第4頁。
    78. 葉信富、李振誥、陳忠偉、張格綸,(2008),「評估蒸發皿係數以推估台灣南部地區蒸發散量之研究」,農業工程學報,第54卷,第3期,第27-35頁。
    79. 葉信富、林宏奕、李振誥,(2013),「臺灣地區蒸發散量及皿蒸發量時空分布之評估」,農業工程學報,第59卷,第3期,第13-21頁。
    80. 葉信富、陳進發、李振誥 (2005),「潛勢能蒸發散經驗公式之最佳化比較」,農業工程學報,第51卷,第1期,第27-37頁。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE