簡易檢索 / 詳目顯示

研究生: 紀廷達
Chi, Ting-Ta
論文名稱: 染料摻雜膽固醇液晶雷射器之研究
Study of dye-doped cholesteric liquid crystal lasers
指導教授: 李佳榮
LEE, Chia-Rong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 84
中文關鍵詞: 能隙邊緣膽固醇膽固醇液晶雷射器
外文關鍵詞: cholesteric liquid crystal lasers, band edge, cholesterics
相關次數: 點閱:69下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要在探討摻雜雷射染料的膽固醇液晶雷射元件,在這個實驗中我們觀察到與以往不同的膽固醇液晶雷射輸出方向而此方向將不再是只有平行螺旋軸的方向,而是具有一個cone角的雷射輸出型式,而在不同的cone角上我們將發現到一個有趣的現象,就是隨著不同的cone角我們將觀察到雷射輸出波長連續的變化。實驗中我們將探討為何在不同的角度上雷射的輸出波長會隨之改變,而我們由觀察各個角度的穿透光譜與螢光光譜變化可知道在各個角度上膽固醇液晶還是可視為一個隨角度(θ)變化的一維光子晶體結構,只是所對應到的等效pitch將會改變。而在接下來的實驗中我們將探討雷射的偏振特性、不同角度的臨界激發能量、不同角度的雷射輸出強度與在剛做好的樣品中為何較不容易觀察到在不同cone角有雷射輸出效果,最後利用這個雷射元件我們將做出一個相當具有價值的角度調變雷射輸出波長元件。

    This experiment demonstrates an inherent direction-tunable lasing effect in a dye-doped cholesteric liquid crystal (DDCLC) film. This novel lasing effect with continuous variation of wavelength of laser output was found and is blue-shifted as the detected polar angle increases. The photons propagating in different polar angle (θ) experience an effective pitch of P0.cos(θ) in one-dimensional cholesteric planar structure, where P0 is the original pitch of the CLCs in normal direction. In the reflection photonic band-edges, the photons experience a long dwelling time inside the periodic structure and its spontaneous and stimulated emission is strongly enhanced, generating the lasing effect. This direction-tunable lasing effect has not been observed before, we believe that this is because of the defect in the fabricated CLC cell. If the CLC cell is not perfect and includes many structural defects, the defect scattering of the normal lasing mode will significantly suppress the inherent direction-tunable lasing effect. Besides, the dependences of the polarization property and the pumping threshold energy of the laser output on the polar angle have also investigated.

    目 錄 摘 要....................................................Ⅰ Abstract.................................................Ⅱ 目 錄....................................................Ⅲ 圖表索引.................................................Ⅶ 第一章 簡介 1-1 何謂液晶..............................................1 1-2 液晶的分類............................................2 1-3 液晶物理.............................................10 1-3.1 液晶的光學異向性...................................10 1-3.2 電場對絕緣向列相液晶的影響.........................13 1-3.3 溫度對相列液晶的影響...............................15 第二章 理論介紹 2-1 膽固醇液晶的光學特性.................................17 2-2 影響膽固醇液晶螺距的外在因素.........................18 2-3 平面膽固醇液晶結構:一維光子晶體......................21 2-4 掺雜雷射染料的膽固醇液晶雷射.........................24 第三章 實驗方法與過程 3-1 材料介紹.............................................26 3-2 樣品製作.............................................29 3-2.1 測量不同角度下膽固醇液晶有不同反射頻譜的樣品.......29 3-2.2 測量不同cone角下膽固醇液晶雷射器有不同螢光光譜的樣 品.................................................29 3-2.3 測量不同cone角下膽固醇液晶雷射器有不同波長的雷射輸出 樣品................................................29 3-3 實驗裝置.............................................31 第四章 結果與討論 4-1 膽固醇液晶的光學特性.................................33 4-1.1 觀察膽固醇液晶的布拉格反射頻譜中心隨不同角度的變化.34 4-1.2 觀察膽固醇液晶的布拉格反射頻譜長波長band edge隨不同 角度的變化.........................................38 4-2 雷射激發染料掺雜膽固醇液晶雷射器之螢光光譜隨不同的偵測 角而改變.............................................40 4-2.1 膽固醇液晶雷射器之螢光光譜隨不同的角度而改變.......42 4-3 雷射激發染料掺雜膽固醇液晶雷射器之雷射輸出波長隨不同的 偵測角而改變.........................................49 4-3.1 膽固醇液晶雷射器之雷射輸出隨不同的偵測角而改變.....50 4-4 雷射激發染料掺雜膽固醇液晶雷射器之雷射輸出偏振隨不同 的偵測角的探討 .......................................57 4-4.1 雷射激發染料掺雜膽固醇液晶雷射器之雷射輸出偏振隨不同 的偵測角的探討.....................................58 4-5 應用-利用角度調變膽固醇液晶雷射的輸出波長............60 4-5.1探討在相同激發強度下且偵測器距離相等的情況改變角度來 觀察雷射輸出的相對強度..............................61 4-5.2 探討在不同角度下相同的距離改變激發能量來觀察激發能量 強度與雷射輸出強度的關係...........................65 4-6 探討為何剛做好的樣品無法達到cone雷射的輸出...........68 4-6.1 探討在剛做好的膽固醇液晶雷射樣品中螢光在各個角度的差 異.................................................68 4-6.2 探討在剛做好的膽固醇液晶雷射各個角度的的臨界激發能 量.................................................69 4-6.3 觀察偏光顯微鏡下兩者的結構差異.....................73 第五章 結論與未來展望 5-1 結論.................................................75 5-2 未來展望.............................................80 參考文獻.................................................82

    [1] P. G. de Gennes and J. Prost,“The Physics of Liquid
    Crystals”, 2nded.,Clarendon Press, Oxford (1993).
    [2] L. M. Blinov and V. G. Chigrinov,“Electrooptic
    Effects in Liquid CrystalMaterials”, Springer-Verlag
    Publishing Co.,New York (1994).
    [3] B. Bahadur,“Liquid Crystals:Applications and
    Uses”,1, World Scientific ,Singapore (1990).
    [4] F. Reintzer, Monatsh. Chem. 9, 421 (1888).
    [5] Letter from F. Reintzer to O. Lehmann, reported by H.
    Kelker, Mol. Cryst.Liq. Cryst. 21, 1 (1973).
    [6] H.-S. Kitzerow, C. Bahr,”Chirality in Liquid
    Crystals”, Springer, New York (2001)
    [7] Andrew J. Lovinger, Karl R. Amundson and Don D. Davis,
    Chem. Mater.6, 1726 (1994).
    [8] Grant R. Fowles,“Introduction to Modern Optics”,
    2nd ed., University of Utah, New York (1975).
    [9] 朱自強, 王仕璠, 蘇顯渝,“現代光學教程 ”, 四川大學出版
    社, 成都(1990).
    [10] A. Yariv, “Quantum Electronics”, John Wiley & Sons
    Press, New York(1989).
    [11] Iam-Choon Khoo,“Liquid Crystals-Physical Properties
    and Nonlinear Optical Phenomena”, John Wiley & Sons
    Press, New York (1995).
    [12] L.P. G. de Gennes and J. Prost,“The Physics of
    Liquid Crystals”, 2nd ed.,Clarendon Press, Oxford
    (1993).
    [13] H. Kozawaguchi and M. Wada, Mol. Crys. Liq. Crys. 45,
    55 (1978).
    [14] P. G. de Gennes, Sol. State Commun. 6, 163 (1968).
    [15] R. B. Meyer, Appl. Phys. Lett. 12, 281 (1968).
    [16] W. Helfrich, Phys. Rev. Lett. 23, 372 (1969).
    [17] L. M. Blinov and V. G. Chigrinov, “Electrooptic
    Effects in Liquid CrystalMaterials”, Springer-
    Verlag, New York (1994).
    [18] Jonathan P. Dowling, J. Appl. Phys. 75, 1896 (1994).
    [19] V. I. Koop, Opt. Lett. 23, 1707 (1998).
    [20] A. Munoz F, Opt. Lett. 26, 804 (2001).
    [21] L. S. Goldberg and J. M. Schnur, U.S. patent 3,
    771,065 (1973).
    [22] Heino Finkelmann, Adv. Matter. 14, 1069 (2001).
    [23] Tsung-Hsien Lin,Appl. Phys. Lett.86,16120 (2005)
    [24] Lev M. Blinov , J. Appl. Phys. 101, 053104 (2007)
    [25] Yuhua Huang, Ying Zhou, and Shin-Tson Wu Proc. SPIE
    6332 (2006)
    [26] Andro Chanishvili, Appl. Phys. Lett. 86, 051107 (2005)

    下載圖示 校內:2010-07-27公開
    校外:2010-07-27公開
    QR CODE