簡易檢索 / 詳目顯示

研究生: 李佳翰
Li, Jia-Han
論文名稱: 有限差分時域法模擬微帶線液晶移相器饋送的陣列縫隙天線
Modeling of Slot Antenna Arrays fed by Microstrip-line with Liquid Crystal Phase Shifter by FDTD Method
指導教授: 張世慧
Chang, Shih-hui
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 37
中文關鍵詞: 微帶線液晶陣列縫隙天線光束偏轉有限時域差分法
外文關鍵詞: microstrip-line, Liquid crystal, slot antenna arrays, beam steering, FDTD
相關次數: 點閱:87下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著時代進步,人們對於影像的要求越來越高,為了得到清晰的影像往往會伴隨著龐大的資料需要傳輸,而60GHz的頻段相較於2.4GHz以及5GHz的頻段擁有較快的傳輸速度,雖然會受限於電磁波的基本特性,越高頻的電磁波在空氣中耗損比較大,使得傳播距離相較於低頻率的電磁波來的短,但如果是在房間內點對點的傳輸以及搭配指向性高的天線,上述傳播距離短以及耗損高的缺點就對60GHz的天線影響不大。並且在高指向性的天線中可以利用液晶移相器使得陣列縫隙天線擁有光束偏轉的能力,藉此讓訊號範圍增加。
    本篇論文主要討論運作於60GHz的微帶線液晶移相器饋送之陣列縫隙天線,內容討論微帶線的基本電磁場分佈並利用貼片天線來驗證模擬出的微帶線是否能正確激發天線,接著討論簡化過後的微帶線液晶移相器在施加電壓與未施加電壓的狀況下其相位差變化,最後討論將微帶線、微帶線液晶移相器、陣列縫隙天線三者結合後的遠場輻射分佈情形,以及討論液晶移相器調控相鄰縫隙天線單元之間的相位達到光束偏轉的效果。

    With new technological advance, people have higher requirements for image quality. In order to get clear images, often a lot of date need to be transmitted. The 60GHz frequency band has a higher data rate than 2.4GHz and 5GHz frequency bands. Due to the basic characteristics of electromagnetic waves, the higher frequency of electromagnetic waves loss is relatively large in the air. It causes a shorter propagation distance compared to low-frequency electromagnetic waves. Assume the antenna is point-to-point transmission and antenna with high directionality, the above-mentioned disadvantages of short propagation distance and high attenuation have little effect on the 60GHz antenna. And in the highly directional antenna, slot antenna array has beam steering capability which can increase signal range by using the liquid crystal shifter.
    This thesis mainly discusses the slot antenna array fed by microstrip-line with liquid crystal phase shifter operating at 60GHz. It discusses the basic electromagnetic field distribution of the microstrip-line and uses a patch antenna to verify that simulated microstrip line can correctly excite the antenna. Then discuss the change in phase difference between the simplified microstrip-line with liquid crystal shifter in the condition of the applied voltage and unapplied voltage. Finally, we discuss the far-field radiation distribution after combining microstrip-line, liquid crystal phase shifter and slot antenna array. And discuss the effect that use the liquid crystal shifter to turn the phase between adjacent slot antenna units, then achieve beam steering.

    口試委員審定書 I 中文摘要 II Abstract III 誌謝 VIII 目錄 IX 表目錄 XI 圖目錄 XII 符號 XIV 第一章 序論 1 1.1 前言 1 1.2 研究動機 2 1.3 本文內容 2 第二章 研究相關理論 3 2.1 場等效原理(Field equivalence principle) 3 2.2 巴比涅原理(Babinet’s principle) 5 2.3 縫隙天線(Slot Antenna) 6 2.4 陣列因子(Array factor) 9 2.5 液晶(Liquid crystal) 11 第三章 數值模擬方法 13 3.1 差分法介紹 13 3.2 時域有限差分法(Finite Difference Time Domain , FDTD) 13 3.3 捲積完美匹配層(Convolution Perfectly Matched Layer , CPML) 14 3.4 近場轉遠場(Near To Far Field) 15 3.5 各向相異材料(Anisotropic material) 19 第四章 研究結果與討論 22 4.1 微帶線(Microstrip-line) 22 4.2 貼片天線(Patch antenna) 24 4.3 微帶線液晶移相器 (Microstrip line with LC phase shifter) 26 4.4 單一縫隙天線(Single slot antenna) 28 4.5 微帶線液晶移相器饋送之陣列縫隙天線(Slot antenna arrays fed by Microstrip-line with LC phase shifter) 30 第五章 結論與未來展望 34 5.1 結論 34 5.2 未來展望 34 參考文獻 35

    [1] Y. Yoshimura, “A microstripline slot antenna,” IEEE Transactions on Microwave Theory and Techniques, 20(11), 760–762(1972)
    [2] B. Bosco, R. Emrick, S. Franson, J. Holmes, and S. Rockwell, “Emerging commercial applications using the 60 GHz unlicensed band: Opportunities and challenges,” in Proc. IEEE WAMICON, 1–4(2006)
    [3] P. Deo and D. Mirshekar-Syahkal, “60GHz beam-steering slotted patch antenna array using liquid crystal phase-shifters,” Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation(2012)
    [4] P. Deo, D. Mirshekar-Syahkal, L. Seddon, S. E. Day, and F. A. Fernandez, “Beam steering 60 GHz slot antenna array using liquid crystal phase shifter,’’ The 8th European Conference on Antennas and Propagation (EuCAP 2014), 1005–1007(2014)
    [5] Manoochehri, O., F. Farzami, D. Erricolo, and M. A. Salari, “A substrate integrated waveguide slot array with voltage-controlled liquid crystal phase shifter,” 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting(2018)
    [6] S. A. Schelkunoff, “Some Equivalence Theorems of Electromagnetics and Their Application to Radiation Problems,” The Bell System Technical Journal, 15(1), 92–112(1936)
    [7] C. A. Balanis, Advanced Engineering Electromagnetics, John Wiley and Sons, New York(1989)
    [8] John D. Kraus, Antennas for all applications 3rd, McGraw-Hill College(2001)
    [9] C. A. Balanis, Antenna Theory: Analysis and Design 3rd ed, Copyright© by John Wiley & Sons,Inc(2005)
    [10] C. Huygens, Traite de la Lumiere, Leyden, 1690. Translated into English by S. P. Thompson,London, reprinted by The University of Chicago Press(1912)
    [11] P. Yaghmaee, O. H. Karabey, B. Bates, C. Fumeaux, and R. Jakoby,“Electrically tuned microwave devices using liquid crystal technology,” Int. J. Antennas Propagation, 2013(824214)(2013)
    [12] Y. Garbovskiy et al., “Liquid Crystal phase shifters at millimeter wave frequencies,” J. Appl. Phys., 111, 054504(2012)
    [13] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propagat., 14(3), 302-307, 1966.
    [14] Allen Taflove, “Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems,” IEEE Transactions on Electromagnetic Compatibility, 22(3), 191-202(1980)
    [15] J. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves", Journal of Computational Physics,” 114(2), 185-200(1994)
    [16] Roden, J. Alan, and Stephen D. Gedney. “Convolutional PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media,” Microwave and optical technology letters, 27(5), 334-338(2000)
    [17] Allen Taflove, A. Computational Electrodynamics: The Finite-difference Time-domain Method 3rd, ©ARTECH HOUSE,Inc(2005)
    [18] L. Dou and A. R. Sebak, “3D FDTD method for arbitrary anisotropic materials,” Microw. Opt. Technol. Lett., 48(10), 2083–2090(2006)
    [19] Schneider, J., and Hudson, S., “The finite-difference time-domain method applied to anisotropic material,” IEEE Trans. Ant. Prop., 41,994–999(1993)
    [20] D. M. Sheen, S. M. Ali, M. D. Abonzahra, and J. A. Kong, “Application of the three-dimensional finite-difference time-domain method to the analysis of planar microstrip circuits,” IEEE Trans. Antennas Propagat., 38,849-857(1990)
    [21] H. Lee, N. Kim, and J. Kim, “Unit cell modeling of meander delay line based on finite-difference time-domain method and Floquet’s theorem,” IEEE 10th Topical Meeting on Electrical Performance of Electronic Packaging, 193–196(2001)
    [22] S. Bulja and D. Mirshekar-Syahkal, “Meander line millimetre-wave liquid crystal based phase shifter,” Electron. Lett., 46(11), 769–771(2010)

    無法下載圖示 校內:2025-07-02公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE