| 研究生: |
余采倫 Yu, Tsai-Luen |
|---|---|
| 論文名稱: |
珊瑚骨骼中鋇鈣比值的地球化學及環境意義 Geochemical and Environmental Significance of Ba/Ca Ratio in Coral Skeletons |
| 指導教授: |
游鎮烽
You, Cheng-Feng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 46 |
| 中文關鍵詞: | 珊瑚 、蘭嶼 、鋇 |
| 外文關鍵詞: | Ba/Ca, Lanyu, coral |
| 相關次數: | 點閱:69 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
珊瑚骨骼的微量元素比已廣泛地作為重建海洋環境的指標,如:Sr/Ca可指示海水表面溫度,而Ba/Ca可用以追蹤陸源的輸出量與海水湧升流強度的變化。本研究的微孔珊瑚(Porties, sp.)採自蘭嶼西北方外海,蘭嶼為一火山島,位於太平洋黑潮經過之處,又是颱風侵襲的最前哨,因此可利用蘭嶼珊瑚Ba/Ca變化量來探討其河川輸出和湧升流作用。為了取得更精確元素的比值,本研究評估不同清洗方法對珊瑚骨骼中元素比值的影響,慎選有效去除有機物的清洗方法,且將標準品與樣品的鈣濃度皆稀釋至100 ppm,以避免不同濃度的基質所產生的誤差。研究中也同時建立了高精確度珊瑚骨骼中次要(Sr/Ca和Mg/Ca)與微量元素(Ba/Ca、B/Ca、U/Ca、Pb/Ca和Mn/Ca)的分析技術,其精確度分別為±0.7%, ±0.8%, ±2.8%, ±3.0%, ±3.0%, ±5.2%和±5.7% (2),足以用於解析珊瑚骨骼中微量元素的變化。
研究結果顯示珊瑚骨骼中Sr/Ca比值與海水表面溫度有高相關性,同時配合X-ray及螢光的條帶比對,可用以建立蘭嶼珊瑚1966-1997的年代模式。珊瑚Ba/Ca比值變化範圍為1.5-6.7 μmol/mol,且呈現週期性的變化,一年有兩個高峰值與一個低峰值。將Ba/Ca比值的變化與蘭嶼降雨量比對,可明顯發現降雨量與Ba/Ca比值具高度的正相關性;推論當降雨量增大,河流的陸源輸出量隨之增加,造成沈積物表面脫附至海水中的Ba也越高。證實珊瑚骨骼的Ba/Ca比值可忠實反映當地所發生的降雨事件或沈積物輸出。湧升流對Ba/Ca比值的影響,以現有的資料判定在受西南季風或颱風的影響之下,可能增大夏末秋初的湧升流進而產生Ba/Ca的峰值。在1966-1986年間,Ba/Ca比值在2 μmol/mol上下,然而在1986年Ba/Ca 比值急劇上升至3 μmol/mol之後,又趨於穩定,根據現有的資料,推測此一Ba/Ca比值的增高應與蘭嶼地區於1981年後設置為低核廢料放置廠所有關。此大規模的開發工程造成當地岩石裸露面積的增加,侵蝕程度及河流的輸砂量也隨之大幅增大,使得當地海水Ba/Ca比值上升。不論長時間尺度亦或短時間尺度,蘭嶼珊瑚深受本島陸源輸出物的影響,而降雨量的大小與人為開發都能使陸源輸出物增加,造成蘭嶼地區31年來Ba/Ca比值明顯改變。
關鍵字:鋇, 珊瑚, 蘭嶼
Abstract
Trace elements in coral skeletons have been widely used for reconstructing various environmental parameters in the ocean. For example, coralline Sr/Ca can be used to reconstruct the temporal changes in sea surface temperature. Furthermore, Ba/Ca ratio has also been proposed as an indicator of regional upwelling and/or sediment flux. In this research, Porites corals were collected from Lanyu Island, offshore southeastern Taiwan. The site selected often experiences abrupt climatic events, such as typhoons and heavy rainfall. Thus, the coralline Ba/Ca derived here can be used to systematically evaluate the potentials for tracing the intensity of upwelling and/or local rainfall. In order to obtain data with high precision, three different cleaning methods have been applied for testing the removing efficiency of organic matters on coral skeletons. Significant matrix effect on the determination of trace element contents can be overcome by diluting [Ca] to 100ppm in the sample solution. In addition, we developed a new analytical technique for simultaneously determining Mg/Ca, Sr/Ca, B/Ca, Ba/Ca, U/Ca, Pb/Ca and Mn/Ca ratios in the corals, and can obtain the high-precision measurements using SF-ICP-MS. The long-term precision (±2σ) is 0.7, 0.8, 2.8, 3.0, 3.0, 5.2 and 5.7%, respectively. The analytical precision is sufficient to observe the variation of trace elements in coral skeletons.
The chronology of the coral sample is based on Sr/Ca data, which is well correlated to SSTs, and also based on the growth bands using the X-ray radiograph. Ba/Ca ratio in Lanyu Island ranges from 1.53 to 6.72 μmol/mol and shows clear seasonal cycles with double peaks each year. Riverine Ba can be carried both by dissolved and particulate phases, so it is a powerful indicator for sediment flux and/or river discharge. Variations in coralline barium are correlated with the intensity of rainfall. The stronger the precipitation, the higher the river flux which carry large amounts of Ba. In the early part of the record (before 1986), the average value of Ba/Ca is ~2 μmol/mol. Following the nuclear waste dump in 1981, a significant increase of Ba/Ca can be clearly observed, possibly due to the elevated delivery of sediments after 1986. We attribute the elevated Ba during 1986-1996 to more intensive erosion due to land-use practices and the associated sediment discharge during wet periods. Whether on long or short time scale, river inputs have been identified as the major source of Ba in corals; however, precipitation and human activities can significantly affect the riverine Ba flux as well. On the basis of the presented data, it leads to conclude that the continental input is the major reason for controlling the variation of Lanyu Ba/Ca ratio over the past 31 years (1966-1997).
Key words: Ba/Ca, coral, Lanyu
參考文獻
王博賢(2005)珊瑚骨骼硼同位素記錄與其環境意義。國立成功大學地球科學研究所碩士論文。
江勝榮 (2004) 以數值分析模式探討颱風湧升流之時空變化。國立中山大學海洋環境及工程學系研究所碩士論文。
邱景星(1999)利用珊瑚鍶鈣比重建綠島長時間尺度海表溫度記錄之研究。國立台灣大學海洋研究所博士論文。
魏剛健、李獻華、孫敏與聶寶符 (2000) 南海北部珊瑚Ba/Ca比值的季節變化及其環境意義。地球化學期刊,第29卷第1期。
Alibert C. and McCulloch M. T. (1997) Strontium/calcium ratios in modern Porites corals from the Great Barrier Reef as a proxy for sea surface temperature: calibration of the thermometer and monitoring of ENSO. Palaeoceanography, 12, 345 – 363.
Alibert C., Kinsley L., Fallon S., McCulloch M., Berkelmans R., and McAllister F. (2003) Source of trace element variability in Great Barrier Reef corals affected by the Burdekin flood plumes. Geochimica et Cosmochimica Acta 67, 231 – 246.
Allison N. (1996a) Comparative determinations of trace and minor elements in coral aragonite by ion microprobe analysis, with preliminary results from Phuket, southern Thailand. Geochimica et Cosmochimica Acta 60, 3457 – 3470.
Andreasen D., Sosdian S., Perron-Cashman S., Lear C., de Garidal-Thoron T., Field P., and Rosenthal Y. (2005) Fidelity of radially viewed ICP-OES and magnetic-sector ICP-MS measurement of Mg/Ca and Sr/Ca ratios in marine biogenic carbonates: Are they trustworthy together? Geochemistry, Geophysics, Geosystems 7, doi: 10.1029/2005GC001124.
Buddemeier R. W., Schneider R. C., and Smith S. V. (1981) The alkaline earth chemistry of corals. Proceedings of the 4th International Coral Reef Symposium, Manila, 81-85
Coffey M., Dehairs F., Collette O., Luther G., Church T. and Jickells T. (1997) The Behaviour of Dissolved Barium in Estuaries. Estuarine, Coastal and Shelf Science 45, 113-121.
de Villiers S., Shen G. T. and Nelson B. K.(1994) The Sr/Ca-temperature relationship in coralline aragonite: influence of variability in (Sr/Ca)seawater and skeletal growth parameters. Geochimica et Cosmochimica Acta 58, 197 – 208.
de Villiers S., Greaves M., and Elderfield H. (2002) An intensity ratio calibration method for the accurate determination of Mg/Ca and Sr/Ca of marine carbonates by ICP-AES. Geochemistry,Geophysics, Geosystems 3, doi: 10.1029/2001GC000169.
Delaney M. L., Williams R. W., and Low C. (1989) Radiochemical analysis of 210Pb in a massive coral (Pavona clavis) from the Galapagos. Geochimica et Cosmochimica Acta 53, 1633 – 1636.
Desenfant F., Veron A. J., Camoin G. F., and Nyberg J. (2006) Reconstruction of pollutant lead invasion into the tropical North Atlantic during the twentieth century. Coral Reefs, doi: 10.1007/s00338-006-0113-x.
Dodge R. E., Jickells T. D., Knap A. H., Doyd S., and Bak R. P. M. (1984) Reef-building coral skeletons as chemical pollution (phosphorus) indicators. Marine Pollution Bulletin 15, 178-187.
Felis T., Lohmann G., Kuhnert H., Lorenz S. J., Scholz D., Pätzold J., Al-Rousan S. A. and Al-Moghrabi S.M. (2004) Increased seasonality in Middle East temperatures during the last interglacial perid. Nature 429, 164 – 168.
Gagan M. K., Ayliffe L. K., Hopley D., Cali J. A., Mortimer G. E., Chappell J., McCulloch M. T. and Head M. J. (1998) Temperature and surface-ocean water balance of the mid-Holocene tropical western Pacific. Science 279, 1014 – 1018.
Gaillardet J., and Allegre C. J. (1995) Variability of boron isotopic compositions in modern and last interglacial corals. Eos Transactions, American Geophysical Union 76, 174.
Hart S. R., and Cohen A. L. (1996) An ion probe study of annual cycles of Sr.Ca and other trace elements in corlas. Geochimica et Cosmochimica Acta 60, 3075 – 3084.
Inoue M., Hata A., Suzuke A., Nohara M., Shikazono N., Yim W., Hantoro W., Donghuai S. and Kawahata H. (2006) Distribution and temporal changes of lead in the surface seawater in the western Pacific and adjacent seas derived from coral skeletons. Environmental Pollution, doi:10.1016/j.envpol.2005.1.048.
le Cornec F. and Correge T. (1997) Determination of uranium to calcium and strontium to calcium ratios in corals by inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry 12, 969 – 973.
Lea D., Shen G., and Boyle E. (1989) Coralline barium records temporal variability in equatorial Pacific upwelling. Nature 340, 373-376.
Lea D. and Martin P. (1996) A rapid mass spectrometric method for the simultaneous analysis of barium, cadmium, and strontium in foraminifera shells. Geochimica et Cosmochimica Acta 60, 3143 – 3149.
Lea D., Mashiotta T., and Spero H. (1999) Controls on magnesium and strontium uptake in planktonic foraminifera determined luve culturing. Geochimica et Cosmochimica Acta 63, 2369 – 2379.
Lea D., Pak D., Peterson L., and Hughen K. (2003) Synchroneity of tropical and high-latitude Atlantic temperatures over the last glacial termination. Science 301, 1361 – 1364.
Lewis S., Shields G., Kamber B. and Lough J. (2007) A multi-trace element coral record of land-use changes in the Burdekin River catchment, NE Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 246, 471 – 487.
Lin I. I., Liu W. T., Wu C. C., Chiang J. C., and Sui C. C. (2003) Satellite observations of modulation of surface winds by typhoon-induced upper ocean cooling. Geophsical Research Letters 30, 1131.
McCulloch M., Gagan M., Mortimer G., Chivas A. and Isdale P. (1994) A high resolution Sr/Ca and δ18O record from the Great Barrier Reef, Australia, and the 1982-1983 El Niño. Geochimica et Cosmochimica Acta 58, 2747 – 2754.
McCulloch M., Fallon S., Wyndham T., Hendy E., Lough J., and Barnes D. (2003) Coral record of increased sediment flux to the inner Great Barrier Reef since European settlement. Nature 421, 727 – 730.
McDermott F., Defant M. J., Hawkesworth C. J., Maury R. C., and Joron J. L. (1993) Isotope and trace element evidence for three component mixing in the genesis of the North Luzon arc lavas (Philippines). Contributions to Mineralogy and Petrology 113, 9 – 23.
Min G. R., Edwards R. L., Taylor F. W., Recy J., Gallup C. D., and Beck J. W. (1995) Annual cycles of U/Ca in coral skeletons and U/Ca thermometry. Geochimica et Cosmochimica Acta 59, 2025 – 2042.
Mitsuguchi T., Matsumoto E., Abe O., Uchida T., and Isdale P. J. (1996) Mg/Ca thermometry in coral skeletons. Science 274, 961 – 963.
Mitsuguchi T., Uchida T., Matsumoto E., Isdale P. J., and Kawana T. (2001) Variations in Mg/Ca, Na/Ca, and Sr/Ca ratios of coral skeletons with chemical treatments: implications for carbonate geochemistry. Geochimica et Cosmochimica Acta 65, 2865 – 2874.
Montaggioni L., Le Cornec F., Corrège T., and Cabioch G. (2006) Coral barium/calcium record of mid-Holocene upwelling activity in New Caledonia, South-West Pacific. Palaeogeography, Palaeoclimatology, Palaeoecology 237, 436 – 455.
Okai T., Suzuki A., Terashima S., Inoue M., Nohara M., Kawahata H., and Imai N. (2004) Collaborative analysis of GSJ/AIST geochemical reference materials JCp-1 (Coral) and JCt-1 (Giant Clam). Chikyukagaku (Geochemistry) 38, 281 – 286.
Ourbak T., Corrège T., Malaizé B., Le Cornec F., Charlier K. and Peypouquet P. J. (2006) A high-resolution investigation of temperature, salinity, and upwelling activity proxies in corals. Geochemistry, Geophysics, Geosystems 3, doi: 10.1029/2005GC001064.
Quinn T. M., and Sampson D. E. (2002) A multiproxy approach to reconstructing sea surface conditions using coral skeleton geochemistry. Palaeoceanography, 17, doi: 10.1029/2000PA000528.
Reuer M., Boyle E., and Cole J. (2003) A mid-twentieth century reduction in tropical upwelling inferred from coralline trace element proxies. Earth and Planetary Science Letters 210, 437 – 452.
Rosenthal Y., Field M., and Sherrell R. (1999) Precise determination of element/calcium ratios in calcareous samples using sector field inductively coupled plasma mass spectrometry. Analytical Chemistry 71, 3248 – 3253.
Schrag D. (1999) Rapid analysis of high-precision Sr/Ca ratios in corals and other marine carbonates. Paleoceanography 14, 97 – 102.
Shaw T., Moore W., Kloepfer J., and Sochaski M. (1998) The flux of barium to the coastal waters of the southeastern USA: The importance of submarine groundwater discharge. Geochimica et Cosmochimica Acta 62, 3047 – 3054.
Shen C., Lee T., Chen C., Wang C., Dai C., and Li L. (1996) The calibration of D[Sr/Ca] versus sea surface temperature relationship for Porites corals. Geochimica et Cosmochimica Acta 60, 3849 – 3858.
Shen C., Chiu H., Chiang H., Chu M., Wei K., Stenke S., Chen M., Lin Y., and Lo L. (2007) High precision measurements of Mg/Ca and Sr/Ca ratios in carbonates by cold plasma inductively coupled plasma quadrupole mass spectrometry. Chemical geology 236, 339 – 349.
Shen G. T., and Boyle E. A. (1988) Determination of lead, cadmium and other trace metals in annually-banded corals. Chemical Geology 67, 47 – 62.
Shen G. T., Campbell T. M., Dunbar R. B., Wellington G. M., Colgan M. W., and Glynn P. W. (1991) Paleochemistry of manganese in corals from the Galapagos Islands. Coral Reefs 10, 91 – 100.
Shen G. T., Cole J. E., Lea D. W., Linn L. J., McConnaughey T. A., and Fairbanks R. G. (1992) Surface ocean variability at Galapagos from 1936-1982: Calibration of geochemical tracers in corals. Paleoceanography 7, 563 – 588.
Shen G. T., and Dunbar R. B. (1995) Environmental controls on uranium in reef corals. Geochimica et Cosmochimica Acta 59, 2009– 3858.
Sinclair D. (1999) High spatial-resolution analysis of trace elements in coral using laser ablation ICP-MS. PhD dissertation, Australian National University.
Sinclair D., and McCulloch M. T. (2004) Corals record low mobile barium concentrations in the Burdekin River during the 1974 flood: evidence for limited Ba supply to rivers? Palaeogeography, Palaeoclimatology, Palaeoecology 214, 155 – 174.
Sinclair D.(2005) Non-river flood barium signals in the skeletons of corals from coastal Queensland, Australia. Earth and Planetary Science Letters 237, 354 – 369.
Smith S. V., Buddemeier R. W., Redalje R. C., and Houck J. E. (1979) Strontium-calcium thermometry in coral skeletons. Science 204, 404 – 407.
Subbarao K. V., Bodas M. S., Khadri S.R.F., Bean J. E., Kale V., Widdowson M., Hooper P. R., and Walsh J. N. (2000) Field excursion guide to the western Deccan Basalt Province. Penrose Deccan 2000, 249 .
Sun Y. and Sun M. (2002) Simultaneous determination of major, minor and trace elements in biocarbonates by inductively coupled plasma mass spectrometry. Analytical Bioanalytical Chemistry 374, 1338 – 1340.
Taylor S. R., and McLennan S. M. (1985) The continental Crust: its composition and evolution. Blackwell, Oxford, 312.
Taylor S. R., and McLennan S. M. (1985) A geochemical evolution of the continental crust. Rev. Geophys. 33, 267-309.
Vengosh A., Kolodny Y., Starinsky A., Chivas A. R., and McCulloch M. T. (1991) Coprecipitation and isotopic fractionation of boron in modern biogenic carbonates. Geochimica et Cosmochimica Acta 55, 2901– 2910.
Wei G., Sun M., Li X. and Nie B. (2000) Mg/Ca, Sr/Ca and U/Ca ratios of a Porites coral from Sanya Bay, Hainan Island, South China Sea and their relationships to sea surface temperature. Palaeogeography, Palaeoclimatology, Palaeoecology 162, 59 – 74.
Yu J., Day J., Greaves M., and Elderfield H. (2005) Determination of multiple element/calcium ratios in foraminiferal calcite by quadrupole ICP-MS. Geochemistry,Geophysics, Geosystems 6, doi: 10.1029/2005GC000964.
Zinke J., Dullo W. C., Heiss G. A. and Eisenhauer A. (2004) ENSO and Indian Ocean srbtropical dipole variability is recorded in a coral record off southwest Madagascar for the period 1659 to 1995. Earth and Planetary Science Letters 228, 177 – 194.