簡易檢索 / 詳目顯示

研究生: 余彥頡
Yu, Yen-Chieh
論文名稱: 機器學習應用於音樂廳設計初期的最佳化演算法
Concert Hall Performance Optimization by Applying Machine Learning to Early Design Stage
指導教授: 蔡耀賢
Tsay, Yaw-Shyan
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 建築學系
Department of Architecture
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 101
中文關鍵詞: 建築聲學音樂廳Pachyderm Acoustic機器學習最佳化演算法
外文關鍵詞: Architectural Acoustics, Concert Hall, Pachyderm Acoustic, Machine Learning, Optimization Algorithm
相關次數: 點閱:53下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 音樂廳的設計往往依賴經驗法則或是傳統公式,在計算機技術逐漸成熟的現在,雖然聲學模擬已經漸漸成為主流,然而模擬的技術門檻高,且在設計流程中,聲學模擬往往在設計定案後才執行,難以成為影響音樂廳設計的工具,更像是以經驗法則設計後進行驗證的工具。
    本研究結合參數化建模、聲學模擬、機器學習、最佳化演算法,提出機器學習應用於音樂廳設計初期的最佳化演算法。首先,驗證了聲學模擬外掛軟體Pachyderm的適用範圍,以Odeon作為比較對象,當Pachyderm的材料散射係數被設為0.1時,500 Hz RT30、1000 Hz C80、SPL(A)模擬值的RMSE、MAPE均在2 JND以下,並採用此散射係數,以鞋盒型與環繞型音樂廳的參數化模型進行聲學模擬生成數據,結合基於等價吸音面積分布的特徵值,訓練機器學習預測模型,準確度評估以RMSE、MAPE小於2 JND為準確,鞋盒型與環繞型參數化模型在500 Hz RT預測上有87.37%與94.10%的準確度,而1000 Hz C80與SPL(A)D均有95%以上的準確度。除此之外,兩者的數據集可以混合並同時預測兩者的室內聲學品質,雖然準確度因彼此的干擾而稍微下降,其各項預測值的RMSE、MAPE仍均在2 JND以內。最後,將機器學習預測模型應用於最佳化演算法取代聲學模擬,大幅縮短多目的最佳化的運算時間,為了避免機器學習對於完全未知的模型無法預測的情況,提出以對總探索空間隨機抽樣的方式生成訓練集以訓練針對預測對象的機器學習預測模型,採用隨機抽樣與1/10的抽樣比例,並討論了對於聲學目標與複合目標的多目的最佳化,帕雷托前緣在目標函數的表現都優於初始模型,且針對不同目的有不同的最佳解。
    與經驗法則和傳統公式相比,機器學習應用於音樂廳設計初期的最佳化演算法更能在設計初期以更快速準確的方式討論設計方案,並在設計初期導入室內聲學品質。

    The design of concert halls often relies on thumb rules or traditional equations. While acoustic simulation has become more mainstream with advanced computer technology, its technical complexity makes it challenging to use in early design stages.
    This study proposes a machine learning based optimization for early concert hall design. The applicability of the Pachyderm Acoustic simulation plugin was validated against Odeon. With a scattering coefficient of 0.1 in Pachyderm, the RMSE and MAPE for 500 Hz RT30, 1000 Hz C80, and SPL(A) were within 2 JND, leading to its adoption for data generation from parametric models of shoebox and surrounded halls. Machine learning models trained on eigenvalue based on equivalent absorption area distribution achieved prediction accuracies of 87.37% and 94.10% for 500 Hz RT in shoebox and surrounded hall models, respectively, and over 95% for 1000 Hz C80 and SPL(A)D. Combined datasets for both hall types could predict room acoustics with RMSE and MAPE still within 2 JND, despite slight accuracy drops due to mutual interference.
    Machine learning models replaced acoustic simulations in optimization algorithms, cutting computation time for multi-objective optimization. To tackle the inability of machine learning models to predict entirely unknown models, a training set was generated via random sampling of the exploration space. Using a 10% sampling ratio, multi-objective optimizations for acoustic and hybrid goals were explored, showing that the Pareto front's performance in objective functions surpassed initial models.

    第一章 緒論 1 1-1研究背景及動機 1 1-2研究目的 3 1-3研究範圍與流程 4 第二章 文獻回顧與相關理論 6 2-1音樂廳聲學理論 6 2-2客觀聲學指標 7 2-3聲學模擬 9 2-4機器學習 10 2-5最佳化演算法 11 2-6相關文獻回顧 12 2-7小結 23 第三章 Pachyderm適用範圍驗證 24 3-1驗證模型 24 3-2邊界條件 25 3-3評估方法 27 3-4驗證與評估 28 3-5小結 32 第四章 機器學習預測模型 33 4-1目標參數 34 4-2特徵值 35 4-3參數化模型與邊界條件 36 (1)鞋盒型參數化模型 36 (2)環繞型參數化模型 38 (3)參數化模型特徵值與模擬值 39 4-4機器學習模型與預測結果 43 (1)鞋盒型參數化模型預測結果 43 (2)環繞型參數化模型預測結果 45 (3)混合鞋盒型與環繞型參數化模型預測結果 47 (4)鞋盒型與環繞型參數化模型相互預測結果 49 4-5小結 51 第五章 音樂廳多目的最佳化 53 5-1抽樣學習 53 (1)鞋盒型參數化模型抽樣學習預測結果 54 (2)環繞型參數化模型抽樣學習預測結果 56 5-2參數化模型與邊界條件 57 5-3多目的最佳化 59 (1)聲學目標多目的最佳化結果 60 (2)複合目標多目的最佳化結果 66 5-4小結 72 第六章 結論與建議 74 6-1研究結論 74 6-2後續研究建議 76 參考文獻 77

    1.Abarghooie, R., Zomorodian, Z. S., Tahsildoost, M., & Shaghaghian, Z. (2021). A Machine-learning Framework for Acoustic Design Assessment in Early Design Stages. arXiv preprint arXiv:2109.06459.https://doi.org/10.48550/arXiv.2109.06459
    2.Arau-Puchades, H. (1988). An improved reverberation formula. Acta Acustica united with Acustica, 65(4), 163-180.
    3.Aretz, M., & Orlowski, R. (2009). Sound strength and reverberation time in small concert halls. Applied Acoustics, 70(8), 1099-1110.https://doi.org/10.1016/j.apacoust.2009.02.001
    4.Ahearn, M. J., Schaeffler, M. J., Celmer, R. D., & Vigeant, M. C. (2009). The just noticeable difference of the clarity index of music, C80. J. Acoust. Soc. Am, 126(4), 2288-2288.https://doi.org/10.1121/1.3249382
    5.Badino, E., Manca, R., Shtrepi, L., Calleri, C., & Astolfi, A. (2019). Effect of façade shape and acoustic cladding on reduction of leisure noise levels in a street canyon. Building and Environment, 157, 242-256.https://doi.org/10.1016/j.buildenv.2019.04.039
    6.Beranek, L. L. (2016). Concert hall acoustics: Recent findings. The Journal of the Acoustical Society of America, 139(4), 1548-1556.https://doi.org/10.1121/1.4944787
    7.Beranek, L. L. (1992). Concert hall acoustics—1992. The Journal of the Acoustical Society of America, 92(1), 1-39.https://doi.org/10.1121/1.404283
    8.Beranek, L. L. (2014). Concert hall design: new findings. Proceedings of the Institute of Acoustics, 36(Pt 3).
    9.Bianco, M. J., Gerstoft, P., Traer, J., Ozanich, E., Roch, M. A., Gannot, S., & Deledalle, C. A. (2019). Machine learning in acoustics: Theory and applications. The Journal of the Acoustical Society of America, 146(5), 3590-3628.https://doi.org/10.1121/1.5133944
    10.Broyles, J. M., & Rusk, Z. T. (2023, May). Predicting the reverberation time of concert halls by use of a random forest regression model. In Proceedings of Meetings on Acoustics (Vol. 51, No. 1). AIP Publishing.https://doi.org/10.1121/2.0001751
    11.Cox, T. J., Avis, M. R., & Xiao, L. (2006). Maximum length sequence and Bessel diffusers using active technologies. Journal of sound and vibration, 289(4-5), 807-829.https://doi.org/10.1016/j.jsv.2005.02.019
    12.Cox, T. J., & Lam, Y. W. (1994). The performance of realisable quadratic residue diffusers (QRDs). Applied Acoustics, 41(3), 237-246.https://doi.org/10.1016/0003-682X(94)90074-4
    13.DISSIMILARITY, I. B. Binaural dissimilarity and optimum ceilings for concert.https://doi.org/10.1121/1.382601
    14.Eyring, C. F. (1930). Reverberation time in “dead” rooms. The Journal of the Acoustical Society of America, 1(2A), 217-241.https://doi.org/10.1121/1.1915175
    15.Forsyth, M. (1988). Buildings for Music. The American Music Teacher, 37(6), 12.
    16.Falcon Perez, R. (2018). Machine-learning-based estimation of room acoustic parameters.
    17.Galiana, M., Llinares, C., & Page, Á. (2012). Subjective evaluation of music hall acoustics: Response of expert and non-expert users. Building and Environment, 58, 1-13.https://doi.org/10.1016/j.buildenv.2012.06.008
    18.Gao, J., Zhao, Y., & Pan, L. (2024). The Effects of Sound Absorption of Stage House on the Acoustics of Auditorium in an Opera House. Buildings, 14(3), 718.
    19.K.B.Ginn.M.Sc. (1978).Architectural Acoustics . Denmark
    20.Haan, C., & Fricke, F. R. (1997). An evaluation of the importance of surface diffusivity in concert halls. Applied Acoustics, 51(1), 53-69.https://doi.org/10.1016/S0003-682X(96)00060-6
    21.Jeon, J. Y., Kim, Y. S., Lim, H., & Cabrera, D. (2015). Preferred positions for solo, duet, and quartet performers on stage in concert halls: In situ experiment with acoustic measurements. Building and Environment, 93, 267-277.https://doi.org/10.1016/j.buildenv.2015.07.010
    22.Jeon, J. Y., Lee, S. C., & Vorländer, M. (2004). Development of scattering surfaces for concert halls. Applied acoustics, 65(4), 341-355.https://doi.org/10.1016/j.apacoust.2003.11.001
    23.Jo, H. I., & Jeon, J. Y. (2022). Optimizing sound diffusion in a concert hall using scale-model measurements and simulations. Journal of Building Engineering, 50, 104240.https://doi.org/10.1016/j.jobe.2022.104240
    24.Jurkiewicz, Y., Wulfrank, T., & Kahle, E. (2013, June). How far should the geometry of a concert hall be optimized?. In International Symposium on Room Acoustics.
    25.Jeon, J. Y., Seo, R., & Jo, H. I. (2020). Effect of stage volume ratio on audience acoustics in concert halls. Sustainability, 12(4), 1370.https://doi.org/10.3390/su12041370
    26.Johnson, J. H., Turner, C. W., Zwislocki, J. J., & Margolis, R. H. (1993). Just noticeable differences for intensity and their relation to loudness. The Journal of the Acoustical Society of America, 93(2), 983-991.https://doi.org/10.1121/1.405404
    27.Kawase, S. (2013). Factors influencing audience seat selection in a concert hall: A comparison between music majors and nonmusic majors. Journal of Environmental Psychology, 36, 305-315.https://doi.org/10.1016/j.jenvp.2013.08.002
    28.Lokki, T., & Pätynen, J. (2019, May). Architectural features that make music bloom in concert halls. In Acoustics (Vol. 1, No. 2, pp. 439-449). MDPI.https://doi.org/10.3390/acoustics1020025
    29.Long, M. (2005). Architectural acoustics. Elsevier.
    30.Marshall, A. H. (1967). A note on the importance of room cross-section in concert halls. Journal of Sound and Vibration, 5(1), 100-112.https://doi.org/10.1016/0022-460X(67)90181-2
    31.Nannariello, J., & Fricke, F. (1999). The prediction of reverberation time using neural network analysis. Applied Acoustics, 58(3), 305-325.https://doi.org/10.1016/S0003-682X(98)00081-4
    32.Oldland, K., Teufl, H., & Mahdavi, A. (2022). Computational and empirical assessment of the acoustic performance of repurposed university spaces. In E3S Web of Conferences (Vol. 362, p. 05001). EDP Sciences.https://doi.org/10.1051/e3sconf/202236205001
    33.Park, H., & Jeon, J. Y. (2016). Acoustical investigation of ambience sound for auditory environments in music performance spaces. Building and Environment, 107, 10-18.https://doi.org/10.1016/j.buildenv.2016.06.019
    34.Peters, B., Nguyen, J., & Omar, R. (2021). Parametric acoustics: design techniques that integrate modelling and simulation. In Proceedings of Euronoise Congress.https://doi.org/10.1177/00375497980700020
    35.Palma, M., Sarotto, M., Echenagucia, T. M., Sassone, M., & Astolfi, A. (2014). Sound-strength driven parametric design of an acoustic shell in a free field environment. Building Acoustics, 21(1), 31-41.https://doi.org/10.1260/1351-010X.21.1.3
    36.Pan, L., & Zhao, Y. (2022). An experimental investigation into the scattering properties of maximum length sequence diffusers and quadratic residue diffusers. Applied Acoustics, 185, 108347.https://doi.org/10.1016/j.apacoust.2021.108347
    37.Pilch, A. (2021). Optimized diffusers for shoe-box shaped performance halls. Applied Acoustics, 178, 108019.https://doi.org/10.1016/j.apacoust.2021.108019
    38.Perez, R. F., Götz, G., & Pulkki, V. (2019). Machine-learning-based estimation of reverberation time using room geometry for room effect rendering. In Proceedings of the 23rd International Congress on Acoustics: integrating 4th EAA Euroregio (Vol. 9, p. 13).
    39.Peters, B., Nguyen, J., & Omar, R. (2021). Parametric acoustics: design techniques that integrate modelling and simulation. In Proceedings of Euronoise Congress.
    40.Rindel, J. H. (1995). Computer simulation techniques for acoustical design of rooms. Acoustics Australia, 23, 81-86.https://doi.org/10.1109/AMS.2017.18
    41.Robinson, P. W., Siltanen, S., Lokki, T., & Savioja, L. (2014). Concert hall geometry optimization with parametric modeling tools and wave-based acoustic simulations. Building Acoustics, 21(1), 55-63.https://doi.org/10.1260/1351-010X.21.1.55
    42.Rindel, J. H. (2000). The use of computer modeling in room acoustics. Journal of vibroengineering, 3(4), 219-224.
    43.Seo, J. G., & Jeon, J. Y. (2019). Impact of early reflection on real-time estimation of direction of arrival in different building environments. Building and Environment, 147, 434-443.https://doi.org/10.1016/j.buildenv.2018.10.029
    44.Summers, J. E. (2008). Auralization: Fundamentals of Acoustics, Modelling, Simulation, Algorithms, and Acoustic Virtual Reality.https://doi.org/10.1121/1.2908264
    45.Sato, S. I., Otori, K., Takizawa, A., Sakai, H., Ando, Y., & Kawamura, H. (2002). Applying genetic algorithms to the optimum design of a concert hall. Journal of Sound and Vibration, 258(3), 517-526.https://doi.org/10.1006/jsvi.2002.5273
    46.Skålevik, M. (2010, August). Reverberation Time–The mother of all room acoustic parameters. In CD Proceedings of 20th International Congress on Acoustic, ICA (Vol. 10).
    47.Tsay, Y. S., & Yeh, C. Y. (2020). A machine learning based prediction model for the sound absorption coefficient of micro-expanded metal mesh (Memm). Applied Sciences, 10(21), 7612.https://doi.org/10.3390/app10217612
    48.Vlaun, N. J. V. (2015). Sound working environments: Optimizing the acoustic properties of open plan workspaces using parametric models.http://resolver.tudelft.nl/uuid:9ea83381-3a19-4486-ae16-f25a68811b6f
    49.Vlaun, N., van Waart, A., Tenpierik, M., & Turrin, M. (2016). A Sound Working Environment: Optimizing the Acoustic Properties of Open Plan Workspaces Using Parametric Models. In SimAUD EU 2016: 7th annual Symposium on Simulation for Architecture and Urban Design (pp. 239-246). simAUD.
    50.Wanniarachchi, D. M. Acoustic consideration and musical influences in the architecture of concert halls.
    51.Yu, Y. C., & Tsay, Y. S. (2023, November). Optimizing the shapes of concert halls through parametric design. In INTER-NOISE and NOISE-CON Congress and Conference Proceedings (Vol. 268, No. 4, pp. 4683-4688). Institute of Noise Control Engineering.https://doi.org/10.3397/IN_2023_0665
    52.Yeh, C. Y., & Tsay, Y. S. (2021). Using machine learning to predict indoor acoustic indicators of multi-functional activity centers. Applied Sciences, 11(12), 5641.https://doi.org/10.3390/app11125641

    下載圖示 校內:2025-07-31公開
    校外:2025-07-31公開
    QR CODE