簡易檢索 / 詳目顯示

研究生: 張宏毅
Chang, Hung-Yi
論文名稱: 二氧化鈰奈米粉體之晶形操控-製備、特性分析及氧化催化活性
Morphological Manipulation of Cerium Oxide Nanopowders- Preparation, Characterization, and Catalytic Oxidation Activity
指導教授: 陳慧英
Chen, Huey-Ing
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 208
中文關鍵詞: 一氧化碳氧化沈澱法觸媒奈米微粉二氧化鈰
外文關鍵詞: CO oxidation, CeO2, Precipitation, Nanoparticle, Catalyst
相關次數: 點閱:76下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究係以恆溫沈澱法及非恆溫沈澱法製備CeO2奈米微粉。文中探討各製備變因,包括反應溫度、氣氛、溶劑、前驅鹽種類等對所得微粉形狀、粒徑、晶態、光學性質等特性之影響,並由粒子之演化過程探討微粉之生成機制。另外,以製備之CeO2微粉作觸媒進行CO氧化反應,比較各觸媒之催化活性,並針對CeO2微粉特性對催化活性之影響來加以探討。

      實驗結果發現,以恆溫沈澱法製備CeO2微粉,所得產物多為顆粒狀,粒徑約在5-20 nm之間,且隨反應溫度之降低而減小,其UV吸收峰出現藍位移,能隙則呈現量子限量化效應。當反應溫度由30 oC升至90 oC,以TEM觀察到產物形狀由四邊形變為六角形,此乃因{111}晶面在高溫下佔優勢所致。以醇-水溶液作反應系溶劑時,發現所得微粉粒徑依序為:pure water > MeOH/water > EtOH/water ≒ n-PrOH/water ≒ i-PrOH/water ≒ t-BuOH/water > EG/water,且隨醇添加量之增加,微粉粒徑減小。由於溶液之介電常數隨溶劑種類及組成而變,文中提出粒徑與介電常數之關係(1/dp = A + B/ε),可合理解釋本實驗之結果。另外,改變反應氣氛N2-O2混合氣流中氧氣濃度來進行微粉製備,結果發現,當氧氣濃度大於50 %時,會有針狀CeO2出現,且氧氣濃度愈高時,針狀產物比例愈高。

      觀察CeO2微粉在恆溫沈澱中粒子之演化情形,發現在高溫 (> 50 oC)時,初始沈澱物Ce(OH)3為針狀,低溫(< 50 oC)時則為極細微粉凝成之膠狀物。針狀Ce(OH)3中間產物會隨反應進行而逐漸裂解、剝離出3-5 nm之微晶,再經OA、OR模式而長成顆粒狀晶體。低溫下極細之Ce(OH)3中間產物則隨時間逐漸成長為顆粒狀CeO2。

      以非恆溫沈澱法製備CeO2微粉,係將製程分成不同操作溫度之沈澱(反應初期5分鐘)與熟成(20小時)兩階段。在高溫沈澱(70-90 oC)、低溫熟成(0 oC)製程下,針狀Ce(OH)3中間產物會轉變為針狀CeO2奈米微粉,且微粉表面具有較高比例之{100}及{110}晶面,推測係因針狀Ce(OH)3中間產物依類結構(topotactic)機制所生成。因此,針狀Ce(OH)3中間產物對最終微粉之形狀具有極為關鍵之角色。實驗中並發現,針狀CeO2奈米微粉僅能由Ce3+前驅鹽獲得,無法以Ce4+前驅鹽得之。

      以N-0(針狀)、CN-0(鍛燒過之針狀)、P-90(顆粒狀)、CP-90(鍛燒過之顆粒狀)及CERAC(商用粉體)五種CeO2微粉作觸媒,比較其CO氧化反應之催化活性。結果發現,各觸媒之催化活性依序為:CN-0 > N-0 > CP-90 > P-90 > CERAC。經600 oC鍛燒6小時之觸媒(CN-0, CP-90)催化活性較未鍛燒處理(N-0, P-90)之催化活性高,且針狀CN-0觸媒之活性最佳,在275 oC下反應之轉化率較商用微粉提升約3.5倍。另由氫氣程溫還原分析結果顯示,CN-0觸媒之表面氧比例最高,與其催化活性相符。由於CN-0觸媒表面以高活性之{110}及{100}晶面居多,較易釋放表面之氧參與反應,故其催化活性最高。另外,CO程溫脫附及紅外線吸收光譜分析亦顯示,CN-0觸媒對CO之吸附能力較CP-90強。此即顯示CeO2微粉晶形對其反應催化活性影響甚鉅,亦提供未來針狀CeO2奈米微粉在催化應用之一發展方向。

     In this study, CeO2 nanoparticles are synthesized by isothermal and non-isothermal precipitations, respectively. The effects of solvents, temperatures, atmospheres and precursors, on the particle size, shape, crystalline structure, optical properties are investigated. The CeO2 particle evolutions at various temperatures are also explored. Furthermore, the catalytic activities for CO oxidation over various CeO2 nanoparticles are studied.

     Experimental results show that, via isothermal precipitation, the particle sizes of resulting products are decreased from 20 to 5 nm by decreasing the reaction temperature, which also results in the blueshift of UV absorption due to quantum size effect. As the reaction temperature increases from 30 to 90 oC, the particle shape observed from TEM images transforms from tetragonal to hexagonal attributed to the preferable {111} planes at higher temperature. Moreover, for the CeO2 synthesis in alcohol-water systems, the particle size of resulting products decreases in order as pure water > MeOH/water > EtOH/water ≒ n-PrOH/water ≒ i-PrOH/water ≒ t-BuOH/water > EG/water. Also, the particle size decreases with increasing the amount of alcohol. Since the dielectric constant of reaction medium plays an important role on the nucleation of particles, a comprehensive model correlated between final particle size (dp) and dielectric constant (ε) in mixed solvents (1/dp = A+ B/ε) is obtained. In addition, high oxygen-containing atmosphere, e.g., O2 concentration above 50 %, needle-like CeO2 nanoaprticles are found in the final products.

     From the evolutions of CeO2 particles at reaction temperatures of 0-90 oC, it is found that the initial Ce(OH)3 precipitate is needle-like at the stage of precipitation above 50 oC. Whereas Ce(OH)3 tiny nanoparticles are precipitated below 50 oC. Afterwards, the Ce(OH)3 needles are broken into nanocrystals and then transformed to be hexagonal-shaped via orientated attachment (OA) and Ostwald ripening (OR) mechanisms.

     The non-isothermal preparation includes two stages, i.e., precipitating at a given temperature for 5 min, and followed by aging at alternative temperature for 20 hr. The results show that, the final products, synthesized by precipitating at higher temperature (70-90 oC) and then aging at very low temperature (0 oC), are needle-like which are via topotactic mechanism. It is worth to note, the surfaces of CeO2 nanoneedles are preferrably composed of {100} and {110} facets. In addition, the CeO2 nanoneedles can only be obtained starting from the Ce3+ precursor, which can not be formed from the Ce4+ precursor.

     Furthermore, CO oxidation is used as the model reaction to compare the catalytic activity of various CeO2 nanoparticles. The results show that the activities of catalysts decrease in order as CN-0 (calcined nanoneedles) > N-0(nanoneedles) > CP-90(calcined nanohexagons) > P-90 (nanohexagons) > CERAC(commercial powders). It reveals the activity of catalyst can be enhanced by means of calcination treatment due to the higher degree of crytallinity. Among five catalysts, CN-0 exhibits highest catalytic activity. For example, the CO conversion for CN-0 at 275 oC is about 3.5 times higher than that for commercial powders. This result can be comprehended from the temperature programming reduction (TPR) result of CN-0 catalyst which provides the most surface oxygen sites preferably composed of higher active {110} and {100} facets. In addition, the results of temperature programming desorption (TPD) and IR absorption spectra indicate that stronger adsorption of CO is found for CN-0 than CP-90. Therefore, the morphological manipulation of CeO2 nanoparticles is quite important for determining their catalytic oxidation activity, which also reveals the promise of needle-like CeO2 in future uses.

    中文摘要 I 英文摘要 III 總目錄 VI 表目錄 XI 圖目錄 XIII 符號說明 XXI 第一章 緒論 1.1 前言 1 1.2 CeO2之性質 1 1.2.1 物性及晶體結構 1 1.2.2 光學性質 2 1.2.3 化學性質 2 1.3 CeO2之應用 3 1.4 CeO2之製備方法 8 1.4.1 物理法 8 1.4.2 化學法 9 1.5 以沈澱法製備CeO2微粉 12 1.5.1 化學反應 12 1.5.2 製備變因與產物特性之關係 14 1.6 研究之動機及目的 17 1.7 論文概要 17 第二章 原理 2.1 奈米微粉之生成 33 2.1.1 過飽和溶液之形成 33 2.1.2 成核 34 2.1.3 Ostwald Ripening成長機制 36 2.1.4 Oriented Attachment成長機制 37 2.2 奈米微粉之吸光原理 38 2.3 X光吸收光譜原理 40 2.3.1 吸收前緣 41 2.3.2 近吸收邊緣結構 41 2.3.3 延伸X-ray吸收細微結構 42 2.4 以CeO2作觸媒之CO氧化反應 43 第三章 實驗方法 3.1 藥品 54 3.2 分析儀器與設備 55 3.2.1 分析儀器 55 3.2.2 實驗設備 56 3.3 二氧化鈰奈米微粉之製備 57 3.3.1 恆溫沈澱法 57 3.3.2 非恆溫沈澱法 57 3.4 CO氧化反應 58 3.5 分析方法及樣品前處理 59 3.5.1 XPS分析 59 3.5.2 XAS分析 59 3.5.3 GC分析 60 3.5.4 XRD分析 61 3.5.5 BET分析 62 3.5.6 TEM分析 62 3.5.7 TPR及TPD分析 63 3.5.8 IR分析 63 第四章 恆溫沈澱法製備CeO2奈米微粉 4.1 前言 76 4.2 溶劑效應 76 4.2.1 溶劑效應原理 76 4.2.2 溶劑種類之影響 80 4.2.3 溶劑比例之影響 81 4.2.4 XAS結果 82 4.2.5 溶劑效應之綜合討論 83 4.3 反應溫度之影響 83 4.3.1 晶體結構及粒徑大小 84 4.3.2 微晶形狀 84 4.3.3 光學特性 85 4.3.4 溫度效應之綜合討論 86 4.4 反應氣氛之影響 86 4.4.1 微晶大小及形狀 87 4.4.2 光學特性 87 4.4.3 XAS結果 88 4.4.4 反應氣氛之綜合討論 88 第五章 非恆溫沈澱法製備CeO2奈米微粉 5.1 前言 115 5.2 CeO2微粉之形成過程 115 5.2.1 0 oC恆溫沈澱之粒子演化情形 116 5.2.2 90 oC恆溫沈澱之粒子演化情形 117 5.2.3 其他溫度粒子演化情形 118 5.2.4 OA成長機制 119 5.2.5 Ce(OH)3之形態 120 5.3 非恆溫沈澱法 121 5.3.1 沈澱階段之溫度為70 oC 121 5.3.2 沈澱階段之溫度為90 oC 125 5.3.3沈澱階段之溫度為0 oC 126 5.3.4 XAS結果 126 5.4 前驅鹽效應 127 第六章 以二氧化鈰為觸媒之CO氧化反應 6.1 前言 151 6.2 CeO2觸媒特性鑑定 151 6.2.1 鍛燒之影響 151 6.2.2 XAS結果 153 6.3 流量對轉化率 153 6.4 各觸媒對CO氧化反應之比較 154 6.5 氫氣程溫還原反應分析 157 6.6 一氧化碳程溫還原反應分析 159 6.7一氧化碳之吸附脫附分析 160 第七章 結論與建議 7.1 結論 180 7.2 建議 182 參考文獻 184 附錄 208

    1. H. F. Mark, D. F. Othmer, C. G. Overberger and G. T. Seaborg, “Encyclopedia of Chemical Technology,” vol. 5, John Wiley & Sons, New York (1970).
    2. L. A. D. Faria and S. Trasatti, “The Point of Zero Charge of CeO2,” J. Colloid Interf. Sci., 167, 352-357 (1994).
    3. K. A. Gschneidner, Jr. and L. R. Eyring, “Handbook on the Physics and Chemistry of Rare Earths,” vol. 3, North-Holland, New York (1984).
    4. N. B. Kirk and J. V. Wood, “The Effect of the Calcination Process on the Crystallite Shape of Sol-Gel Cerium Oxide Used for Glass Polishing,” J. Mater. Sci., 30, 2171-2175 (1995).
    5. F. S. Galasso, “Structure and Properties of Inorganic Solids,” Pergamon, Oxford (1970).
    6. M. Fox, “Optical Properties of Soli,s,” Oxford, New York (2001).
    7. S. Tsunekawa, T. Fukuda and A. Kasuya, “Blue Shift in Ultraviolet Absorption Spectra of Monodispersed CeO2-x Nanoparticles,” J. Appl. Phys., 87, 1318-1321 (2000).
    8. T. Masui, K. Machida, T. Sakata, H. Mori and G. Adachi, “Preparation and Characterization of Cerium Oxide Ultrafine Particles Dispersed in Polymer Thin Films,” J. Alloy Compd., 256, 97-101 (1997).
    9. N. Serpone, D. Lawless and R. Khairutdinov, “Size Effect on the Photophysical Properties of Colloidal Anatase TiO2 Particles: Size Quantization or Direct Transitions in This Indirect Semiconductor?” J. Phys. Chem. B, 99, 16646-16654 (1995).
    10. X. L. Song, G. Z. Qiu and P. Qu, “Advances in Research on Applications and Synthesis Methods of CeO2 Nanoparticles,” Rare Metal Mater. Eng., 33, 29-34 (2004).
    11. P. Patsalas, S. Logothetidis, L. Sygellou and S. Kennou, “Structure-dependent Electronic Properties of Nanocrystalline Cerium Oxide Films”, Phys. Rev. B, 68, 035104 (2003).
    12. M. Sugiura, “Oxygen Storage Materials for Automotive Catalysts: Ceria-zirconia Solid Solutions”, Catal. Surv. Asia, 7, 77-87 (2003).
    13. J. Campserveux and P. Gerdanian, “Etude Thermodynamique de l'oxyde CeO2−x Pour 1.5 <O/Ce < 2,” J. Solid State Chem., 23, 73-92 (1978).
    14. A. Trovarelli, “Catalytic Properties of Ceria and CeO2-containing Materials,” Catal. Rev., 38, 439-520 (1996).
    15. Z. X. Yang, T. K. Woo and K. Hermansson, “Strong and Weak Adsorption of CO on CeO2 Surfaces from First Principles Calculations,” Chem. Phys. Lett., 396, 384-392 (2004).
    16. V. V. Pushkarev, V. I. Kovalchuk and J. L. d'Itri, “Probing Defect Sites on the CeO2 Surface with Dioxygen,” J. Phys. Chem. B, 108, 5341-5348 (2004).
    17. M. Lundberg, B. Skarman and L. R. Wallenberg, “Crystallography and Porosity Effects of CO Conversion on Mesoporous CeO2,” Micropor. Mesopor. Mater., 69, 187-195 (2004).
    18 M. F. Wilkes, P. Hayden and A. K. Bhattacharya, “Catalytic Studies on Ceria Lanthana Solid Solutions II. Oxidation of Carbon Monoxide,” J. Catal., 219, 295-304 (2003).
    19. Y. W. Zhang, R. Si, C. S. Liao and C. H. Yan, “Facile Alcohothermal Synthesis, Size-dependent Ultraviolet Absorption, and Enhanced CO Conversion Activity of Ceria Nanocrystals,” J. Phys. Chem. B, 107, 10159-10167 (2003).
    20. A. Naydenov, R. Stoyanova and D. Methandjiev, “Ozone Decomposition and CO Oxidation on CeO2,” J. Mol. Catal. A, 98, 9-14 (1995).
    21. L. Triguero, S. de Carolis, M. Baudin, M. Wojcik, K. Hermansson, M. A. Nygren and L. G. M. Pettersson, “Metal Oxides: O2- Chemistry and Dynamical Effects on Oxide Reactivity,” Faraday Discuss., 114, 351-362 (1999)
    22. C. Oliva, G. Termignone, F. P. Vatti, L. Forni and A. V. Vishniakov, “Electron Paramagnetic Resonance Spectra of CeO2 Catalyst for CO Oxidation,” J. Mater. Sci., 31, 6333-6338 (1996)
    23. H. Cordatos, D. Ford and R. J. Gorte, “Simulated Annealing Study of the Structure and Reducibility in Ceria Clusters,” J. Phys. Chem., 100, 18128-18132 (1996).
    24. D. Duprez and O. Enea, “Clusters and Thin Films Prepared Morphology and Catalytic Properties,” Stud. Surf. Sci. Catal., 91, 941-948 (1995).
    25. Y. Liu, Q. Fu and M. F. Stephanopoulos, “Preferential Oxidation of CO in H2 over CuO-CeO2 Catalysts,” Catal. Today, 93-95, 241-246 (2004).
    26. F. Marino, C. Descorme and D. Duprez, “Noble Metal Catalysts for the Preferential Oxidation of Carbon Monoxide in the Presence of Hydrogen (PROX),” Appl. Catal. B, 54, 59-66 (2004).
    27. S. Colussi, C. de Leitenburg, G. Dolcetti and A. Trovarelli, “The Role of Rare Earth Oxides as Promoters and Stabilizers in Combustion Catalysts,” J. Alloy Compd., 374, 387-392 (2004).
    28. G. Jacobs, A. Crawford, L. Williams, P. M. Patterson and B. H. Davis, “Low Temperature Water-gas Shift: Comparison of Thoria and Ceria Catalysts,” Appl. Catal. A, 267, 27-33 (2004).
    29. J. Ladebeck amd K. Kochloefl, “Cr-free Iron-catalysts for Water-gas Shift Reaction,” Stud. Surf. Sci. Catal., 91, 1079-1083 (1995).
    30. P. R. Sarode, K. R. Priolkar, P. Bera, M. S. Hegde, S. Emura and R. Kumashiro, “Study of Local Environment of Ag in Ag/CeO2 Catalyst by EXAFS,” Mater. Res. Bull., 37, 1679-1690 (2002).
    31. C. H. Wang and S. S. Lin, “Preparing an Active Cerium Oxide Catalyst for the Catalytic Incineration of Aromatic Hydrocarbons,” Appl. Catal. A, 268, 227-233 (2004).
    32. P. Bera, K. C. Patil and M. S. Hegde, ” NO Reduction, CO and Hydrocarbon Oxidation over Combustion Synthesized Ag/CeO2 Catalyst,” Phys. Chem. Chem. Phys., 2, 3715-3719 (2000).
    33. S. Imamura, H. Yamada and K. Utani, “Combustion Activity of Ag/CeO2 Composite Catalyst,” Appl. Catal. A, 192, 221-226 (2000).
    34. L. L. Murrel and R. T. Carlin, “Silver on Ceria: An Example of a Highly Active Surface Phase Oxide Carbon Oxidation Catalyst,” J. Catal., 159, 479-490 (1996).
    35. P. Bera and M. S. Hegde, “Characterization and Catalytic Properties of Combustion Synthesized Au/CeO2 Catalyst,” Catal. Lett., 79, 75-81 (2002).
    36. S. Carrettin, P. Concepcion, A. Corma, J. M. L. Nieto and V. F. Puntes, “Nanocrystalline CeO2 Increases the Activity of an Catalyst for CO Oxidation by Two Orders of Magnitude,” Angew. Chem. Int. Edit., 43, 2538-2540 (2004).
    37. W. S. Shin, C. R. Jung, J. Han, S. W. Nam, T. H. Lim, S. A. Hong and H. I. Lee, “Development of Au/CeO2 Catalysts for Preferential Oxidation of CO in PEMFC,” J. Ind. Eng. Chem., 10, 302-308 (2004).
    38. J. Soria, J. C. Conesa and A. Martinez-Arias, “Characterization of Surface Defects in CeO2 Modified by Incorporation of Precious Metals from Chloride Salts Precursors: An EPR Study Using Oxygen as Probe Molecule,” Colloid Surf. A, 158, 67-74 (1999).
    39. W. Liu and M. Flytzani-Stephanopoulos, “Total Oxidation of Carbon Monoxide and Methane over Transition Metal Fluorite Oxide Composite Catalysts: I. Catalyst Composition and Activity,” J. Catal., 153, 304-316 (1995).
    40. W. Liu and M. Flytzani-Stephanopoulos, “Total Oxidation of Carbon-Monoxide and Methane over Transition Metal Fluorite Oxide Composite Catalysts : II. Catalyst Characterization and Reaction-Kinetics,” J. Catal., 153, 317-332 (1995).
    41. R. D. Waters, J. J. Weimer and J. E. Smith, “An Investigation of the Activity of Corprecipitated Gold Catalysts for Methane Oxidation,” Catal. Lett., 30, 181-188 (1995).
    42. E. A. Shaw, A. P. Walker, T. Rayment and R. M. Lambert, “Methanol Synthesis Activity of Au/CeO2 Catalysts Derived from a CeAu2 Alloy Precursor: Do Schottky Barriers Matter?” J. Catal., 134, 747-750 (1992).
    43. N. Mouaddib, V. Perrichon and G. A. Martin, “Characterization of Copper-cobalt Catalysts for Alcohol Synthesis from Syngas,” Appl. Catal. A, 118, 63-72 (1994).
    44. N. Mouaddib, V. Perrichon and M. Primet, “Bulk and Surface Characterization of Supported Cobalt Copper-Catalysts Active in CO Hydrocondensation,” J. Chem. Soc. Faraday Trans. I, 85, 3413-3424 (1989).
    45. L. A. Bruce, M. Hoang, A. E. Hughes and T. W. Turney, “Ruthenium Promotion of Fischer-tropsch Synthesis over Coprecipitated Cobalt/ceria Catalysts,” Appl. Catal., A, 100, 51-67 (1993).
    46. Z. L. Wang, C. Colliex, V. Paul-Boncour, A. Percheron-Guegan, J. C. Achard and J. Barrault, “Electron Microscopy Characterization of Lanthanum-cobalt Intermetallic Catalysts,” J. Catal., 105, 120-143 (1987).
    47. A. B. Hungria, A. Iglesias-Juez, A. Martinez-Arias, M. Fernandez-Garcia, J. A. Anderson, J. C. Conesa and J. Soria, “Effects of Copper on the Catalytic Properties of Bimetallic Pd-Cu/(Ce,Zr)Ox/Al2O3 and Pd-Cu/(Ce,Zr)Ox Catalysts for CO and NO Elimination,” J. Catal., 206, 281-294 (2002).
    48. P. Bera, S. Mitra, S. Sampath and M. S. Hegde, “Promoting Effect of CeO2 in a Cu/CeO2 Catalyst: Lowering of Redox Potentials of Cu Species in the CeO2 Matrix,” Chem. Commun., 927-928 (2001).
    49. X. M. Qi and M. Flytzani-Stephanopoulos, “Activity and Stability of Cu-CeO2 Catalysts in High-temperature Water-gas Shift for Fuel-cell Applications,” Ind. Eng. Chem. Res., 43, 3055-3062 (2004).
    50. F. Aupretre, C. Descorme and D. Duprez, “Bio-ethanol Catalytic Steam Reforming over Supported Metal Catalysts,” Catal. Commun., 3, 263-267 (2002).
    51. S. Hilaire, X. Wang, T. Luo, R. J. Gorte and J. Wagner, “A Comparative Study of Water-gas-shift Reaction over Ceria Supported Metallic Catalyst,” Appl. Catal. A, 215, 271-278 (2001).
    52. G. Owen, C. M. Hawkes, D. Lloyd, J. R. Jennings, R. M. Lambert and R. M. Nix, “Methanol Synthesis Catalysts from Intermetallic Precursors: Binary Lanthanide—Copper Catalysts,” Appl. Catal., 33, 405-430 (1987).
    53. Y. Y. Liu, T. Hayakawa, K. Suzuki, S. Hamakawa, “Highly Active Copper/ceria Catalysts for Steam Reforming of Methanol,” Appl. Catal. A, 223, 137-145 (2002).
    54. P. Bera, S. T. Aruna, K. C. Patil and M. S. Hegde, “Studies on Cu/CeO2: A New NO Reduction Catalyst,” J. Catal., 186, 36-44 (1999).
    55. S. Hilaire, X. Wang, T. Luo, R. J. Gorte and J. Wagner, “A Comparative Study of Water-gas-shift Reaction over Ceria Supported Metallic Catalyst,” Appl. Catal. A, 215, 271-278 (2001).
    56. G. Neri, A. Pistone, C. Milone and S. Galvagno, “Wet Air Oxidation of p-Coumaric Acid over Promoted Ceria Catalysts,” Appl. Catal. B, 38, 321-329 (2002).
    57. C. de Leitenburg, A. Trovarelli and A. Kaspar, “Temperature-Programmed and Transient Kinetic Study of CO2Activation and Methanation over CeO2 Supported Noble Metals,” J. Catal., 166, 98-107 (1997).
    58. L. Tournayan, N. R. Marcilio and R. Frety, “Promotion of Hydrogen Uptake in Cerium Dioxide: The Role of Iridium,” Appl. Catal., 78, 31-43 (1991).
    59. R. Frety, P. N. Da Silva and M. Guennin, “Study of Supported Iridium Catalysts by Hydrogen—Oxygen Titrations: Influence of the Support,” Appl. Catal., 58, 175-188 (1990).
    60. P. N. Da Silva and M. Guennin, “Metallic Area of Supported Iridium Catalysts,” Appl. Catal., 54, 203-215 (1989).
    61. T. Inui, “Role of Rare Earth Oxides as Transport Media for Rapid Catalytic Reactions,” J. Alloy Compd., 193, 47-51 (1993).
    62. H. S. Roh, H. S. Potdar, K. W. Jun, J. W. Kim and Y. S. Oh, “Carbon Dioxide Reforming of Methane over Ni Incorporated into Ce-ZrO2 Catalysts,” Appl. Catal. A, 276, 231-239 (2004).
    63. S. Pengpanich, V. Meeyoo and T. Rirksomboon, “Methane Partial Oxidation over Ni/CeO2-ZrO2 Mixed Oxide Solid Solution Catalysts,” Catal. Today, 93-95, 95-105 (2004).
    64. J. Barrault and A. Alouche, “Isotopic Exchange Measurements of the Rate of Interconversion of Carbon Monoxide and Carbon Dioxide over Nickel Supported on Rare Earth Oxides,” Appl. Catal., 58, 255-267 (1990).
    65. P. S. Lambrou, C. N. Costa, S. Y. Christou and A. M. Efstathiou, “Dynamics of Oxygen Storage and Release on Commercial Aged Pd-Rh Three-way Catalysts and Their Characterization by Transient Experiments,” Appl. Catal. B, 54, 237-250 (2004)
    66. H. Zhu, Z. Qin, W. Shan, W. Shen and J. Wang, “Pd/CeO2-TiO2 Catalyst for CO Oxidation at Low Temperature: A TPR Study With H2 and CO as Reducing Agents,” J. Catal., 225, 267-277 (2004)
    67. J. A. Wang, L. F. Chen, M. A. Valenzuela, A. Montoya, J. Salmones and P. Del Angel, “Rietveld Refinement and Activity of CO Oxidation over Pd/Ce0.8Zr0.2O2 Catalyst Prepared via a Surfactant-assisted Route,” Appl. Surf. Sci., 230, 34-43 (2004).
    68. J. A. Wang, J. M. Dominguez, A. Montoya, S. Castillo, J. Navarrete, M. Moran-Pineda, J. Reyes-Gasga and X. Bokhimi, “New Insights into the Defective Structure and Catalytic Activity of Pd/ceria,” Chem. Mater., 14, 4676-4683 (2002).
    69. S. Bedrane, C. Descorme and D. Duprez, “Investigation of the Oxygen Storage Process on Ceria- and Ceria-zirconia-supported Catalysts,” Catal. Today, 75, 401-405 (2002).
    70. K. R. Priolkar, P. Bera, P. R. Sarode, M. S. Hegde, S. Emura, R. Kumashiro and N. P. Lalla, “Formation of Ce1-xPdxO2-delta Solid Solution in Combustion-synthesized Pd/CeO2 Catalyst: XRD, XPS, and EXAFS Investigation,” Chem. Mater., 14, 2120-2128 (2002).
    71. L. Kepinski, “Carbon Deposition in Pd/CeO2 Catalyst: TEM Study,” Catal. Today, 50, 237-245 (1999).
    72. W. J. Shen, Y. Ichihashi, H. Ando, Y. Matsumura, M. Okumura and M. Haruta, “Effect of Reduction Temperature on Structural Properties and CO/CO2 Hydrogenation Characteristics of a Pd-CeO2 Catalyst,” Appl. Catal. A, 217, 231-239 (2001).
    73. R. S. Monteiro, L. C. Dieguez and M. Schmal, “The Role of Pd Precursors in the Oxidation of Carbon Monoxide over Pd/Al2O3 and Pd/CeO2/Al2O3 Catalysts,” Catal. Today, 65, 77-89 (2001).
    74. P. Bera, K. C. Patil, V. Jayaram, G. N. Subbanna and M. S. Hegde, “Ionic Dispersion of Pt and Pd on CeO2 by Combustion Method: Effect of Metal-ceria Interaction on Catalytic Activities for NO Reduction and CO and Hydrocarbon Oxidation,” J. Catal., 196, 293-301 (2000).
    75. D. Ciuparu, A. Bensalem and L. Pfefferle, “Pd-Ce Interactions and Adsorption Properties of Palladium: CO and NO TPD Studies over Pd-Ce/Al2O3 catalysts,” Appl.Catal. B, 26, 241-255 (2000).
    76. G. L. Dong, J. G. Wang, Y. B. Gao and S. Y. Chen, “A Novel Catalyst for CO Oxidation at Low Temperature,” Catal. Lett., 58, 37-41 (1999).
    77. E. Bekyarova, P. Fornasiero, J. Kaspar amd M. Graziani, “CO Oxidation on Pd/CeO2-ZrO2 Catalysts,” Catal. Today, 45, 179-183 (1998).
    78. M. F. Luo, Z. Y. Hou, X. X. Yuan and X. M. Zheng, “Characterization Study of CeO2 Supported Pd Catalyst for Low-temperature Carbon Monoxide Oxidation,” Catal. Lett., 50, 205-209 (1998).
    79. S. Zhao, T. Luo and R. J. Gorte, “Deactivation of the Water-gas-shift Activity of Pd/ceria by Mo,” J. Catal., 221, 413-420 (2004).
    80. X. Wang and R. J. Gorte, “The Effect of Fe and Other Promoters on the Activity of Pd/ceria for the Water-gas Shift Reaction,” Appl. Catal. A, 247, 157-162 (2003).
    81. T. Bunluesin, R. J. Gorte and G. W. Graham, “Studies of the Water-gas-shift Reaction on Ceria-supported Pt, Pd, and Rh: Implications for Oxygen-storage Properties,” Appl. Catal. B, 15, 107-114 (1998).
    82. F. Le Normand, J. Barrault, R. Breault, L. Hilaire and A. Kiennemann, “Catalysis with Palladium Deposited on Rare Earth Oxides: Influence of the Support on Reforming and Syngas Activity and Selectivity,” J. Phys. Chem., 95, 257-269 (1991).
    83. C. Sudhakar and M. A. Vannice, “Methanol and Methane Formation over Palladium/rare earth Oxide Catalysts,” J. Catal., 95, 227-243 (1985).
    84. M. D. Mitchell and M. A. Vannice, “Adsorption and Catalytic Behavior of Palladium Dispersed on Rare Earth Oxides,” Ind. Eng. Chem. Fundam., 23, 88-96 (1984).
    85. H. Idriss, C. Diagne, J. P. Hindermann, A. Kiennemann and M. A. Barteau, “Effect of Addition of Pd, Co and Pd-Co on CeO2- Syngas Conversion and Acetaldehyde Reaction,” Stud. Surf. Sci. Catal., 75, 2119- (1993).
    86. L. Fan and K. Fujimoto, “Promotive SMSI Effect for Hydrogenation of Carbon Dioxide to Methanol on a Pd/CeO2 Catalyst,” J. Catal., 150, 217-220 (1994).
    87. J. Barbier, L. Oliviero, B. Renard and D. Duprez, “Catalytic Wet Air Oxidation of Ammonia over M/CeO2 Catalysts in the Treatment of Nitrogen-containing Pollutants,” Catal. Today, 75, 29-34 (2002).
    88. U. Oran and D. Uner, “Mechanisms of CO Oxidation Reaction and Effect of Chlorine Ions on the CO Oxidation Reaction over Pt/CeO2 and Pt/CeO2/gamma-Al2O3 Catalysts,” Appl. Catal. B, 54, 183-191 (2004).
    89. X. L. Tang, B. C. Zhang, Y. Li, Y. D. Xu, Q. Xin and W. J. Shen, “Structural Features and Catalytic Properties of Pt/CeO2 Catalysts Prepared by Modified Reduction-deposition Techniques,” Catal. Lett., 97, 163-169 (2004).
    90. I. Manuel, C. Thomas, H. Colas, N. Matthess and G. Djega-Mariadassou, “A New Approach in the Kinetic Modelling of Three-way Catalytic Reactions,” Top. Catal., 30-31, 311-317 (2004).
    91. S. Y. Christou, C. N. Costa and A. M. Efstathiou, “A Two-step Reaction Mechanism of Oxygen Release from Pd/CeO2: Mathematical Modelling Based on Step Gas Concentration Experiments,” Top. Catal., 30-31, 325-331 (2004).
    92. P. Bera, A. Gayen, M. S. Hegde, N. P. Lalla, L. Spadaro, F. Frusteri and F. Arena, “Promoting Effect of CeO2 in Combustion Synthesized Pt/CeO2 Catalyst for CO Oxidation,” J. Phys. Chem. B, 107, 6122-6130 (2003).
    93. A. De Sarkar and B. C. Khanra, “MC Model Studies of CeO2-metal Interaction in Pt-Rh Nanocatalysts,” Indian J. Chem. Sect. A, 41, 1784-1788 (2002).
    94. S. Bernal, G. Blanco, J. M. Gatica, C. Larese and H. Vidal, “Effect of Mild Re-oxidation Treatments with CO2 on the Chemisorption Capability of a Pt/CeO2 Catalyst Reduced at 500 Degrees C,” J. Catal., 200, 411-415 (2001).
    95. J. M. A. Harmsen, J. H. B. J. Hoebink and J. C. Schouten, “Acetylene and Carbon Monoxide Oxidation over a Pt/Rh/CeO2/gamma-Al2O3 Automotive Exhaust Gas Catalyst: Kinetic Modelling of Transient Experiments,” Chem. Eng. Sci., 56, 2019-2035 (2001).
    96. S. Bernal, G. Blanco, M. A. Cauqui, M. P. Corchado, C. Larese, J. M. Pintado and J. M. Rodriguez-Izquierdo, “Cerium-terbium Mixed Oxides as Alternative Components for Three-way Catalysts: A Comparative Study of Pt/CeTbOx and Pt/CeO2 Model Systems,” Catal. Today, 53, 607-612 (1999).
    97. J. M. A. Harmsen, J. H .B. J. Hoebink and J. C. Schouten, “Transient Kinetics of Ethylene and Carbon Monoxide Oxidation for Automotive Exhaust Gas Catalysis: Experiments and Modelling,” Stud. Surf. Sci. Catal., 122, 101-108 (1999).
    98. R. H. Nibbelke, A. J. L. Nievergeld, J. H. B. J. Hoebink and G. B. Marin, “Development of A Transient Kinetic Model for the CO Oxidation by O2 over a Pt/Rh/CeO2/gamma-Al2O3 Three-way Catalyst,” Appl. Catal. B, 19, 245-259 (1998).
    99. A. Gayen, K. R. Priolkar, R. Sarode, V. Jayaram, M. S. Hegde, G. N. Subbanna and S. Emura, “Ce1-xRhxO2-delta Solid Solution Formation in Combustion-synthesized Rh/CeO2 Catalyst Studied by XRD, TEM, XPS, and EXAFS,” Chem. Mater., 16, 2317-2328 (2004).
    100. K. Krantz and S. Senkan, “Systematic Evaluation of Monometallic Catalytic Materials for Lean-burn NOx Reduction Using Combinatorial Methods,” Catal. Today, 98, 413-421 (2004).
    101. M. Fernandez-Garcia, A. Martinez-Arias,A. Iglesias-Juez, A. B. Hungria, J. A. Anderson, J. C. Conesa and J. Soria, “Behavior of Bimetallic Pd-Cr/Al2O3 and Pd-Cr/(Ce,Zr)Ox/Al2O3 Catalysts for CO and NO Elimination,” J. Catal., 214, 220-233 (2003).
    102. C. N. Costa, P. G. Savva, C. Andronikou, P. S. Lambrou, K. Polychronopoulou, V. C. Belessi, V. N. Stathopoulos, P. J. Pomonis and A. M. Efstathiou, “An Investigation of the NO/H2/O2 (lean de-NOx) Reaction on a Highly Active and Selective Pt/La0.7Sr0.2Ce0.1FeO3 Catalyst at Low Temperatures,” J. Catal., 209, 456-471 (2002).
    103. G. Centi, P. Fornasiero, M. Graziani, J. Kaspar and F. Vazzana, “Enhancement of the Low Temperature Activity in NO Reduction in Lean Conditions by SMSI Effect in Pt/CeO2-ZrO2 on Alumina Catalyst,” Top. Catal., 16,173-180 (2001).
    104. K. Nagaveni, G. Sivalingam, A. Gayen, G. Madras and M. S. Hegde, “Gas-phase Hydrogenation of Benzene to Cyclohexane over Combustion-synthesized Ce1-xPtxO2-delta (x = 0.01, 0.02),” Catal. Lett., 88, 73-81 (2003).
    105. D. J. Chang, I. P. Chen, M. T. Chen and S. S. Lin, “Wet Air Oxidation of a Reactive Dye Solution Using CoAlPO4-5 and CeO2 Catalysts,” Chemosphere, 52, 943-949 (2003).
    106. D. I. Kondarides, Z L. Zhang and X. E. Verykios, “Chlorine-induced Alterations in Oxidation State and CO Chemisorptive Properties of CeO2-supported Rh Catalysts,” J. Catal., 176, 536-544 (1998).
    107. T. Chojnacki, K. Krause and L. D. Schmidt, “Microstructure and Reactivity of Pt-Ce and Rh-Ce Particles on Silica,” J. Catal., 128, 161-185 (1991).
    108. D. Demri, J. P. Hindermann, A. Kiennemann and C. Mazzocchia, “CO hydrogenation on Rhodium Catalysts as Studied by Temperature-programmed Desorption and Reaction,” Catal. Lett., 23, 227-236 (1994).
    109. A. Trovarelli, G. Dolcetti, C. de Leitenburg, J. Kaspar, P. Finetti and A. Santoni, “Rh-CeO2 Interaction Induced by High-temperature Reduction- Characterization and Catalytic Behavior in Transient and Continuous Conditions,” J. Chem. Soc. Farasay Trans., 88, 1311-1319 (1992).
    110. A. Trovarelli, C. de Leitenburg and G. Dolcetti, “CO and CO2 Hydrogenation under Transient Conditions over Rh–CeO2: Novel Positive Effects of Metal–support Interaction on Catalytic Activity and Selectivity,” Chem. Commun. 472-472 (1991).
    111. P. Fornasiero, N. Hickey, J. Kaspar, T. Montini and M. Graziani, “Redox and Chemisorptive Properties of Ex-chloride and Ex-nitrate Rh/Ce0.6Zr0.4O2 Catalysts - 2. Effect of High-temperature Redox Cycling,” J. Catal., 189, 339-348 (2000).
    112. G. Vlaic, P. Fornasiero, G. Martra, E. Fonda, J. Kaspar, L. Marchese, E. Tomat, S. Coluccia and M. Graziani, “Morphology of Rhodium Particles in Ex-chloride Rh/Ce0.5Zr0.5O2 Catalyst,” J. Catal., 190, 182-190 (2000).
    113. F. Fajardie, J. F. Tempere, J. M. Manoli, O. Touret, G. Blanchard and G. Djega-Mariadassou, “Activity of Rhx+ Species in CO Oxidation and NO Reduction in a CO/NO/O2 Stoichiometric Mixture oOver a Rh/CeO2-ZrO2 Catalyst,” J. Catal., 179, 469-476 (1998).
    114. P. Fornasiero, G. R. Rao, J. Kaspar, F. L'Erario and M. Graziani, “Reduction of NO by CO over Rh/CeO2-ZrO2 Catalysts - Evidence for a Support-promoted Catalytic Activity,” J. Catal., 175, 269-279 (1998).
    115. S. Hosokawa, H. Kanai, K. Utani, Y. Taniguchi, Y. Saito and S. Imamura, “State of Ru on CeO2 and Its Catalytic Activity in the Wet Oxidation of Acetic Acid,” Appl. Catal. B, 45, 181-187 (2003).
    116. S. Imamura, Y. Taniguchi, Y. Ikeda, S. Hosokawa, H. Kanai and H. Ando, “Reduction Behavior of Ru/CeO2 Catalysts and Their Activity for Wet Oxidation,” React. Kinet. Catal. Lett., 76, 201-206 (2002).
    117. L. Oliviero, J. Barbier, D. Duprez, H. Wahyu, J. W. Ponton, I. S. Metcalfe and D. Mantzavinos, “Wet Air Oxidation of Aqueous Solutions of Maleic Acid over Ru/CeO2 Catalysts,” Appl. Catal. B, 35, 1-12 (2001).
    118. L. Oliviero, J. Barbier, D. Duprez, H. Wahyu, J. W. Ponton, I. S. Metcalfe, and D. Mantzavinos, “Wet Air Oxidation of Aqueous Solutions of Maleic Acid over Ru/CeO2 Catalysts,” Appl. Catal. B, 35, 1-12 (2001).
    119. L. Oliviero, J. Barbier, D. Duprez, A. Guerrero-Ruiz, B. Bachiller-Baeza snd I. Rodriguez-Ramos, “Catalytic Wet Air Oxidation of Phenol and Acrylic Acid over Ru/C and Ru-CeO2/C Catalysts,” Appl. Catal. B, 25, 267-275 (2000).
    120. L. Oliviero, J. Barbier, S. Labruquere and D. Duprez, “Role of the Metal-support Interface in the Total Oxidation of Carboxylic Acids over Ru/CeO2 Catalysts,” Catal. Lett., 60, 15-19 (1999).
    121. N. M. Dobrynkin, M. V. Batygina and A. S. Noskov, “Solid Catalysts for Wet Oxidation of Nitrogen-containing Organic Compounds,” Catal. Today, 45, 257-260 (1998).
    122. J. Barbier, F. Delanoe, F. Jabouille, D. Duprez, G. Blanchard and P. Isnard, “Total Oxidation of Acetic Acid in Aqueous Solutions over Noble Metal Catalysts,” J. Catal., 177, 378-385 (1998).
    123. M. F. Luo, X. M. Zheng and Y. J. Zhong, “CO Oxidation Activity and TPR Characterization of CeO2-supported Manganese Oxide Catalysts,” Indian J. Chem. Sect. A, 38, 703-707 (1999).
    124. T. S. Zhang, J. Ma, L. B. Kong, P. Hing, S. H. Chan and J. A. Kilner, “High-temperature Aging Behavior of Gd-doped Ceria,” Electrochem. Solid State Lett. 7, J13-J15 (2004).
    125. A. Martinez-Arias, A. B. Hungria, M. Fernandez-Garcia, J. C. Conesa, and G. Munuera, “Interfacial Redox Processes under CO/O2 in a Nanoceria-supported Copper Oxide Catalyst,” J. Phys. Chem. B, 108,17983-17991 (2004).
    126. C. R. Jung, J. Han, S. W. Nam, T. H. Lim, S. A. Hong and H. I. Lee, “Selective Oxidation of CO over CuO-CeO2 Catalyst: Effect of Calcination Temperature,” Catal. Today, 93-95, 183-190 (2004).
    127. X. L. Tang, B. C. Zhang, Y. Li, Y. D. Xu, Q. Xin and W. J. Shen, “Carbon Monoxide Oxidation over CuO/CeCO2 Catalysts,” Catal. Today, 93-95, 191-198 (2004).
    128. Y. Liu, Q. Fu and M. F. Stephanopoulos, “Preferential Oxidation of CO in H2 over CuO-CeO2 Catalysts,” Catal. Today, 93-95, 241-246 (2004).
    129. G. Sedmak, S. Hocevar and J. Levec, “CO Oxidation Kinetics over a Nanostructured Cu0.1Ce0.9O2-y Catalyst: A CO/O2 Concentration Cycling Study,” Top. Catal., 30-31, 445-449 (2004).
    130. O. Goerke, P. Pfeifer and K. Schubert, “Water Gas Shift Reaction and Selective Oxidation of CO in Microreactors,” Appl. Catal. A, 263, 11-18 (2004).
    131. G. Sedmak, S. Hocevar and J. Levec, “Transient Kinetic Model of CO Oxidation over a Nanostructured Cu0.1Ce0.9O2-y Catalyst,” J. Catal., 222, 87-99 (2004).
    132. X. C. Zheng, W. Huang, S. M. Zhang, S. Wang and S. H. Wu, “Low-temperature CO Oxidation on CuO/CeO2 Catalyst Prepared by Sol-gel Method,” Chin. J. Catal., 24, 887-888 (2003).
    133. W. J. Shan, W. J. Shen and C. Li, “Structural Characteristics and Redox Behaviors of Ce1-xCuxOy Solid Solutions,” Chem. Mater., 15, 4761-4767 (2003).
    134. R. Lin, M. F. Luo, Y. J. Zhong, Z. L. Yan, G. Y. Liu and W. P. Liu, “Comparative Study of CuO/Ce0.7Sn0.3O2, CuO/CeO2 and CuO/SnO2 Catalysts for Low-temperature CO Oxidation,” Appl. Catal. A, 255, 331-336 (2003).
    135. G. Avgouropoulos and T. Ioannides, “CO Oxidation over CuO-CeO2 Catalysts Prepared via the Urea-nitrate Combustion Method,” Appl. Catal. A, 244, 155-167 (2003).
    136. X. Y. Jiang, R. X. Zhou, J. Yuan, G. L. Lu and X. M. Zheng, “Catalytic Oxidative Properties and Characterization of CuO/CeO2 Catalysts,” J. Rare Earth, 21,55-59 (2003).
    137. E. G. Wang and S. Y. Chen, “Structure and Catalytic Behavior of CuO-ZrO-CeO2 Mixed Oxides,” J. Rare Earth, 20, 533-537 (2002).
    138. T. J. Huang and Y. C. Kung, “Effect of Support Modification on Reduction and CO Oxidation Activity of Doped Ceria-supported Copper Oxide Catalyst,” Catal. Lett., 85, 49-55 (2003).
    139. B. Skarman, D. Grandjean, R. E. Benfield, A. Hinz, A. Andersson and L. R. Wallenberg, “Carbon Monoxide Oxidation on Nanostructured CuOx/CeO2 Composite Particles Characterized by HREM, XPS, XAS, and High-energy Diffraction,” J. Catal., 211, 119-133 (2002).
    140. B. Skarman, T. Nakayama, D. Grandjean, R. E. Benfield, E. Olsson, K. Niihara and L. R. Wallenberg, “Morphology and Structure of CuOx/CeO2 Nanocomposite Catalysts Produced by Inert Gas Condensation: An HREM, EFTEM, XPS, and High-energy Diffraction Study,” Chem. Mater., 14, 3686-3699 (2002).
    141. G. Avgouropoulos, T. Ioannides, C. Papadopoulou, J. Batista, S. Hocevar and H. K. Matralis, “A Comparative Study of Pt/gamma-Al2O3, Au/alpha-Fe2O3 and CuO-CeO2 Catalysts for the Selective Oxidation of Carbon Monoxide in Excess Hydrogen,” Catal. Today, 75, 157-167 (2002).
    142. J. B. Wang, S. C. Lin and T. J. Huang, “Selective CO Oxidation in Rich Hydrogen over CuO/samaria-doped Ceria,” Appl. Catal. A, 232, 107-120 (2002).
    143 X. Y. Jiang, G. L. Lu, R. X. Zhou, J. X. Mao, Y. Chen and X. M. Zheng, “Studies of Pore Structure, Temperature-programmed Reduction Performance, and Micro-structure of CuO/CeO2 Catalysts,” Appl. Surf. Sci., 173, 208-220 (2001).
    144. R. Cataluna, I. M. Baibich, R. M. Dallago, C. Picinini, A. Martinez-Arias and J. Soria, “Characterization of Cu/CeO2/Al2O3 Catalysts by Temperature Programmed Reduction and Activity for CO Oxidation,” Quim. Nova, 24, 55-59 (2001).
    145. N. R. E. Radwan, G. A. Fagal and G. A. El-Shobaky, “ Effects of CeO2-doping on Surface and Catalytic Properties of CuO/Al2O3 Solids,” Colloid Surf. A, 178, 277-286 (2001).
    146. P. G. Harrison, I. K. Ball, W. Azelee, W. Daniell and D. Goldfarb, “Nature and Surface Redox Properties of Copper(II)-promoted Cerium(IV) Oxide CO-oxidation Catalysts,” Chem. Mater., 12, 3715-3725 (2000).
    147. A. Martinez-Arias, M. Fernandez-Garcia, O. Galvez, J. M. Coronado, J. A. Anderson, J. C. Conesa, J. Soria and G. Munuera, “Comparative Study on Redox Properties and Catalytic Behavior for CO Oxidation of CuO/CeO2 and CuO/ZrCeO4 Catalysts,” J. Catal., 195, 207-216 (2000).
    148. J. J. Zhang, N. Li, Y. J. Liu and B. X. Lin, “Doping Effect of CuO on CeO2 for CO Oxidation,” Chin. Chem. Lett., 9, 873-876 (1998).
    149. M. Kang, M. W. Song and C. H. Lee, “Catalytic Carbon Monoxide Oxidation over CoOx/CeO2 Composite Catalysts,” Appl. Catal. A, 251, 143-156 (2003).
    150. M. Kang, M. W. Song and K. L. Kim, “Catalytic Oxidation of Carbon Monoxide over CoOx/CeO2 Catalysts,” React. Kinet. Catal. Lett., 79, 3-10 (2003).
    151. Y. J. Zhong, R. Lin, M. F. Luo and W. P. Liu, “Study of Ce0.7Sn0.3O2 Supported PdO Catalysts for CO Oxidation,” React. Kinet. Catal. Lett., 79, 53-60 (2003).
    152. A. Hadi and Yaacob II, “Synthesis of PdO/CeO2 Mixed Oxides Catalyst for Automotive Exhaust Emissions Control,” Catal. Today, 96, 165-170 (2004).
    153. R. Craciun, “Characterization of Mixed Amorphous/crystalline Cerium Oxide Supported on SiO2,” Solid State Ionics, 110, 83-93 (1998).
    154. T. Masui, K. Fujiwara, Y. M. Peng, K. Machida and G. Y. Adachi, “Carbon Monoxide Oxidation Characteristics over the Al2O3-supported CeO2-ZrO2 Catalysts Prepared by the Microemulsion Method,” Chem. Lett., 1285-1286 (1997).
    155. T. Masui, K. Fujiwara, Y. M. Peng, T. Sakata, K. Machida, H. Mori and G. Adachi, “Characterization and Catalytic Properties of CeO2-ZrO2 Ultrafine Particles Prepared by the Microemulsion Method,” J. Alloy Compd., 269, 116-122 (1998).
    156. G. L. Markaryan, L. N. Ikryannikova, G. P. Muravieva, A. O. Turakulova, B. G. Kostyuk, E. V. Lunina, V. V. Lunin, E. Zhilinskaya and A. Aboukais, “Redox Properties and Phase Composition of CeO2-ZrO2 and Y2O3-CeO2ZrO2 Solid Solutions,” Colloid Surf. A, 151, 435-447 (1999).
    157. Y. Madier, C. Descorme, A. M. Le Govic and D. Duprez, “Oxygen Mobility in CeO2 and CexZr(1-x)O2 Compounds: Study by CO Transient Oxidation and O-18/O-16 Isotopic Exchange,” J. Phys. Chem. B, 103, 10999-11006 (1999).
    158. J. R. Gonzalez-Velasco, M. A. Gutierrez-Ortiz, J. L. Marc, J. A. Botas, M. P. Gonzalez-Marcos and G. Blanchard, “Catalytic Activity Study of Ceria-zirconia Mixed Oxides Submitted to Different Aging Treatments under Simulated Exhaust Gases,” Ind. Eng. Chem. Res., 39, 272-276 (2000).
    159. M. Boaro, C. de Leitenburg, G. Dolcetti and A. Trovarelli, “The Dynamics of Oxygen Storage in Ceria-zirconia Model Catalysts Measured by CO Oxidation under Stationary and Cycling Feedstream Compositions,” J. Catal., 193, 338-347 (2000).
    160. M. Boaro, A. Trovarelli, J. H. Hwang and T. O. Mason, “Electrical and Oxygen Storage/release Properties of Nanocrystalline Ceria-zirconia Solid Solutions,” Solid State Iionics, 147, 85-95 (2002).
    161. J. A. Wang, M. A. Valenzuela, S. Castillo, J. Salmones and M. Moran-Pineda, “Studies of Zirconia-doped Ceria Nanomaterials for CO and C3H8 Oxidation,” J. Sol-Gel Sci. Technol., 26, 879-882 (2003).
    162. A. Wootsch, C. Descorme and D. Duprez, “Preferential Oxidation of Carbon Monoxide in the Presence of Hydrogen (PROX) over Ceria-zirconia and Alumina-supported Pt Catalysts,” J. Catal., 225, 259-266 (2004).
    163. T. Nakatani, T. Wakita, T. Wakasugi and R. Ota, “Oxygen Store and Release of CeO2-ZrO2-MO1.5 (M = La, Nd) Powders Prepared by Co-precipitation Method,” J. Ceram. Soc. Jpn., 112, 445-451 (2004).
    164. M. Boaro, F. Giordano, S. Recchia, V. Dal Santo, M. Giona and A. Trovarelli, “On the Mechanism of Fast Oxygen Storage and Release in Ceria-Zirconia Model Catalysts,” Appl. Catal. B, 52, 225-237( 2004).
    165. F. Gracia, W. Li and E. E. Wolf, “The Preferential Oxidation of CO: Selective Combinatorial Activity and Infrared Studies,” Catal. Lett., 91, 235-242 (2003).
    166. M. F. Luo, J. Chen, L. S. Chen, J. Q. Lu, Z. Feng and C. Li, “Structure and Redox Properties of CexTi1-xO2 Solid Solution,” Chem. Mater., 13, 197-202 (2001).
    167. R. Lin, Y. J. Zhong, M. F. Luo and W. P. Liu, “Structure and Redox Properties of CexSn1-xO2 Mixed Oxides,” Indian J. Chem. Sect. A, 40, 36-40 (2001).
    168. R. Sasikala, N. M. Gupta and S. K. Kulshreshtha, ”Temperature-programmed Reduction and CO Oxidation Studies over Ce-Sn Mixed Oxides,” Catal. Lett., 71, 69-73 (2001).
    169. E. Lopez-Navarrete, A. Caballero, A. R. Gonzalez-Elipe and M. Ocana, “Low-temperature Preparation and Structural Characterization of Pr-doped Ceria Solid Solutions,” J. Mater. Res., 17, 797-804 (2002).
    170. A. Martinez-Arias, M. Fernandez-Garcia, L. N. Salamanca, R. X. Valenzuela, J. C. Conesa and J. Soria, “Structural and Redox Properties of Ceria in Alumina-supported Ceria Catalyst Supports,” J. Phys. Chem. B, 104, 4038-4046 (2000).
    171. J. B. Wang, W. H. Shih and T. J. Huang, “Study of Sm2O3-doped CeO2/Al2O3-supported Copper Catalyst for CO Oxidation,” Appl. Catal. A, 203, 191-199 (2000).
    172. C. S. Yao and H. S. Weng, “Liquid-phase Cooxidation of Cyclohexane and Cyclohexanone over Supported Cerium Oxide Catalysts,” Ind. Eng. Chem. Res., 37, 2647-2653 (1998).
    173. W. G. Lu, J. Long and H. P. Tian, “Effect of Lanthanum and Cerium Modifiers on Properties of Alumina,” Chin. J. Catal., 24, 574-578 (2003).
    174. S. H. Oh and C. C. Eickel, “Effects of Cerium Addition on CO Oxidation Kinetics over Alumina-supported Rhodium Catalysts,” J. Catal., 112, 543-555 (1988).
    175. J. G. Nunan, H. J. Robota, M. J. John and S. A. Bradley, “Physicochemical Properties of Ce-containing Three-way Catalysts and the Effect of Ce on Catalyst Activity,” J. Catal., 133, 309-324 (1992).
    176. C. Serre, F. Garin, G. Belot and G. Maire, “Reactivity of Pt/Al2O3 and Pt-CeO2Al2O3 Catalysts for the Oxidation of Carbon Monoxide by Oxygen: I. Catalyst Characterization by TPR Using CO as Reducing Agent,” J. Catal., 141, 1-8 (1993).
    177. J. C. Frost, “Junction Effect Interactions in Methanol Synthesis Catalysts,” Nature, 334, 577-580 (1988).
    178. S. E. Golunski, H. A. Hatcher, R. R. Rajaram and T. J. Truex, “Origins of Low-temperature Three-way Activity in Pt/CeO2,” Appl. Catal. B, 5, 367-376 (1995).
    179. L. Fan and K. Fujimoto, “Reaction Mechanism of Methanol Synthesis from Carbon Dioxide and Hydrogen on Ceria-supported Palladium Catalysts with SMSI Effect,” J. Catal., 172, 238-242 (1997).
    180. S. Rossignol, Y. Madier and D. Duprez, “Preparation of Zirconia-ceria Materials by Soft Chemistry,” Catal. Today, 50, 261-270 (1999).
    181. G. Colón, F. Valdivieso, M. Pijolat, R. T. Baker, J. J. Calvino and S. Bernal, “Textural and Phase Stability of CexZr1-xO2 Mixed Oxides under High Temperature Oxidising Conditions,” Catal. Today, 50, 271-284 (1999).
    182. T. Brezesinski, M. Antonietti, M. Groenewolt, N. Pinna and B. Smarsly, “The Generation of Mesostructured Crystalline CeO2, ZrO2 and CeO2-ZrO2 Films Using Evaporation-induced Self-assembly,” New J. Chem., 29, 237-242 (2005).
    183. J. Kašpar, P. Formasiero and M. Graziani, “Use of CeO2-based Oxides in the Three-way Catalysis”, Catal. Today, 50, 285-298 (1999).
    184. B. Wen and M. Y. He, “Study of the Cu-Ce Synergism for NO Reduction with CO in the Presence of O2, H2O and SO2 in FCC Operation,” Appl. Catal. B, 37, 75-82(2002).
    185. S. S. Y. Lin, D. J. Chang, C. H. Wang and C. C. Chen, “Catalytic Wet Air Oxidation of Phenol by CeO2 Catalyst - Effect of Reaction Conditions,” Water Res., 37, 793-800 (2003).
    186. J. Guo and M. Al-Dahhan, “A Sequential Approach to Modeling Catalytic Reactions in Packed-bed Reactors,” Chem. Eng. Sci., 59, 2023-2037 (2004).
    187. S. S. Lin, C. L. Chen, D. J. Chang and C. C. Chen, “Catalytic Wet Air Oxidation of Phenol by Various CeO2 Catalysts,” Water Res., 36, 3009-3014 (2002).
    188. D. J. Chang, S. S. Lin, C. L. Chen, S. P. Wang and W. L. Ho, “Catalytic Wet Air Oxidation of Phenol Using CeO2 as the Catalyst. Kinetic Study and Mechanism Development,” J. Environ. Sci. Heal. A, 37, 1241-1252 (2002).
    189. L. Oliviero, H. Wahyu, J. Barbier, D. Duprez, J. W. Ponton, I. S. Metcalfe and D. Mantzavinos, “Experimental and Predictive Approach for Determining Wet Air Oxidation Reaction Pathways in Synthetic Wastewaters,” Chem. Eng. Res. Des., 81, 384-392 (2003).
    190. I. P. Chen, S. S. Lin, C. H. Wang, L. Chang and J. S. Chang, “Preparing and Characterizing an Optimal Supported Ceria Catalyst for the Catalytic Wet Air Oxidation of Phenol,” Appl. Catal. B, 50, 49-58 (2004).
    191. A. Trovarelli, C. de Leitenburg, M. Boaro and G. Dolcetti, “The Utilization of Ceria in Industrial Catalysis,” Catal. Today, 50, 353-367 (1999).
    192. Y. I. Matatov-Meytal and M. Sheintuch, “Catalytic Abatement of Water Pollutants,” Ind. Eng. Chem. Res., 37, 309-326 (1998).
    193. N. M. Dobrynkin, M. V. Batygina, A. S. Noskov, P. G. Tsyrulnikov, D. A. Shlyapin, V. V. Schegolev, D. A. Astrova and B. M. Laskin, “Catalysts Ru-CoCeO2/Sibunit for Catalytic Wet Air Oxidation of Aniline and Phenol,” Top. Catal., 33, 69-76 (2005).
    194. T. Morimoto, H. Tomonaga and A. Mitani, “Ultraviolet Ray Absorbing Coatings on Glass for Automobiles,” Thin Solid Film, 351, 61-65 (1999).
    195. R. Li, S. Yabe, M. Yamashita, S. Momose, S. Yoshida, S. Yin and T. Sato, “Synthesis and UV-shielding Properties of ZnO- and CaO-doped CeO2 via Soft Solution Chemical Process,” Solid State Ionic, 151, 235-241 (2002).
    196. T. Masui, M. Yamamoto, T. Sakata, H. Mori and G. Adachi, “Synthesis of BN-coated CeO2 Fine Powder as a New UV Blocking Material,” J. Mater. Chem., 10,353-357 (2000).
    197. S. Tsunekawa, J. T. Wang, Y. Kawazoe and A. Kasuya, “Blueshifts in Ultraviolet Absorption Spectra of Cerium Oxide Nanocrystallites,” J. Appl. Phys., 94, 3654-3656 (2003).
    198. S. Tsunekawa, R. Sivamohan, T. Ohsuna, A. Kasuya, H. Takahashi and K. Tohji, “Ultraviolet Absorption Spectra of CeO2 Nano-particles,” Mater. Sci. Forum, 315-317, 439-445 (1999).
    199. G. R. Bamwenda and H. Arakawa, “Cerium Dioxide as a Photocatalyst for Water Decomposition to O2 in the Presence of Ceaq4+ and Feaq3+ Species,” J. Mol. Catal. A, 161, 105-113 (2000).
    200. G. R. Bamwenda, T. Uesigi, Y. Abe, K. Sayama and H. Arakawa, “The Photocatalytic Oxidation of Water to O2 over Pure CeO2, WO3 and TiO2 using Fe3+ and Ce4+ as Electron Acceptors,” Appl. Catal. A, 205, 117-128 (2001).
    201. J. M. Coronado, A. J. Maira, A. Martínez-Arias, J. C. Conesa and J. Soria, “EPR Study of the Radicals Formed upon UV Irradiation of Ceria-based Photocatalysts,” J. Photoch. Photobio. A, 150, 213-221 (2002).
    202. M. Miyauchi, A. Nakajima, T. Watanabe and K. Hashimoto, “Photocatalysis and Photoinduced Hydrophilicity of Various Metal Oxide Thin Films,” Chem. Mater., 14, 2812-2816 (2002).
    203. M. D. Hernández-Alonso, A. B. Hungría, A. Martínez-Arias, M. Fernández-García, J. M. Coronado, J. C. Conesa and J. Soria, “EPR Study of Photoassisted Formation of Radicals on CeO2 Nanoparticles Employed for Toluene Photooxidation,” Appl. Catal. B, 50, 167-175 (2004).
    204. J. Lin and J. C. Yu, “An Investigation on Photocatalytic Activities of Mixed TiO2-rare earth oxides for the Oxidation of Acetone in Air,” J. Photoch. Photobio. A, 116, 63-67 (1998).
    205. P. A. Atanasov, T. Okato, R. I. Tomov and M. Obara, “(110)Nd:KGW Waveguide Films Grown on CeO2/Si Substrates by Pulsed Laser Deposition,” Thin Solid Film, 453-454, 150-153 (2004).
    206. M. Shirakawa, J. Unno, K. Aizawa, M. Kusunoki, M. Mukaida and S. Ohshima, “Fabrication and Characterization of a CeO2 Buffer Layer on c-Plane and Tilt-c-Plane Sapphire Substrates,” Physica C, 392-396, 1346-1352 (2003).
    207. M. Sohma, I. Yamaguchi, K. Tsukada, W. Kondo, S. Mizuta, T. Manabe and T. Kumagai, “Cerium Oxide (CeO2) Buffer Layers for Preparation Hugh-Jc YBCO Films on Large-area Sapphire Substrates (30 cm× 10 cm) by Coating Pyrolysis,” Physica C, 412-414, 1326-1330 (2004).
    208. C. L. Chai, S. Y. Yang, Z. K. Liu, M. Y. Liao and N. F. Chen, “Violet/blue Photoluminescence from CeO2 Thin Film,” Chin. Sci. Bull., 48, 1198-1200 (2003).
    209. M. Tomozawa, “Oxide CMP Mechamisms,” Solid State Technol., 40, 169-172 (1997).
    210. 許健興, ”化學機械研磨用奈米級二氧化鈰粉體之合成”, 逢甲大學化工系碩士論文 (2002).
    211. N. Izu, W. Shin, N. Murayama and S. Kanzaki, “Resistive Oxygen Gas Sensors Based on CeO2 Fine Powder Prepared Using Mist Pyrolysis,” Sens. Actuator B, 87, 95-98 (2002).
    212. N. Izu, W. Shin and N. Murayama, “Fast Response of Resistive-type Oxygen Gas Sensors Based on Nano-sized Ceria Powder,” Sens. Actuator B, 93, 449-453 (2003).
    213. A. Trinchi, Y. X. Li, W. Wlodarski, S. Kaciulis, L. Pandolfi, S. Viticoli, E. Comini and G. Sberveglieri, “Investigation of Sol-gel Prepared CeO2-TiO2 Thin Films for Oxygen Gas Sensing,” Sens. Actuator B, 95, 145-150 (2003).
    214. 謝昌哲, “異質摻雜LaGaO3固態電解質之研究”, 東華大學材料科學研究所碩士論文 (2003).
    215. N. M. Sammes and Z. Cai, “Ionic Conductivity of Ceria/yttria Stabilized Zirconia Electrolyte Materials,” Solid State Ionic, 100, 39-44 (1997).
    216. D. Schneider, M. Gödickemeier and L. J. Gauckler, “Nonstoichiometry and Defect Chemistry of Ceria Solid Solution,” J. Electroceram., 1, 165-172 (1997).
    217. O. A. Marina, C. Bagger, S. Primdahl and M. Mogensen, “A Solid Oxide Fuel Cell With a Gadolinia-doped Ceria Anode: Preparation and Performance,” Solid State Ionic, 123, 199-208 (1999).
    218. E. S. Putna, J. Stubenrauch, J. M. Vohs and R. J. Gorte, “Ceria-based Anodes for the Direct Oxidation of Methane in Solid Oxide Fuel Cells,” Langmuir, 11, 4832-4837 (1995).
    219. Y. Sun, Z. Y. Wang, J. M. Tian and X. G. Cao, “Coloration of Mica Glass-ceramic for Use in Dental CAD/CAM System,” Mater. Lett., 57, 425-428 (2002).
    220. T. V. Mani, H. K. Varma, A. D. Damodaran and K. G. K. Warrier, “Sol-spray Technique for Fine-grained Ceria Particles,” Ceram. Int., 19, 125-128 (1993).
    221. S. B. Su, Y. W. Bao, L. Wang and J. X. Li, “Effect of Y2O3, CeO2 on Sintering Properties of Si3N4 Ceramics,” J. Rare Earth, 21, 357-359 (2003).
    222. T. K. Bhattacharya, A. Ghosh, H. S. Tripathi and S. K. Das, “Solid State Sintering of Lime in Presence of La2O3 and CeO2,” Bull. Mater. Sci., 26, 703-706 (2003).
    223. W. C. Tsai and T. Y. Tseng, “Structural and Electrical Properties of Cerium Dioxide Films Grown by RF Magnetron Sputtering,” J. Mater. Sci., 8, 313-320 (1997).
    224. W. H. Lee and P. Shen, “Laser Ablation Deposition of CeO2-x Epitaxial Domains on Glass,” J. Solid State Chem., 166, 197-202 (2002).
    225. L. Y. Kuo and P. Shen, “Shape Dependent Coalescence and Preferred Orientation of CeO2 Nanocrystallites,” Mater. Sci. Eng. A, 277, 258-265 (2000).
    226. L. Wu, H. J. Wiesmann, A. R. Moodenbaugh, R. F. Klie, Y. Zhu, D. O. Welch and M. Suenaga, “Oxidation State and Lattice Expansion of CeO2-x Nanoparticles as a Function of Particle Size,” Phys. Rev. B, 68, 125415 (2004).
    227. B. Skårman, T. Nakayama, D. Grandjean, R. E. Benfield, E. Olsson, K. Niihara and L. R. Wallenberg, “Morphology and Structure of CuOx/CeO2 Nanocomposite Catalysts Produced by Inert Gas Condensation: An HREM, EFTEM, XPS, and High-energy Diffraction Study,” Chem. Mater., 14, 3686-3699 (2002).
    228. M. Hirano and E. Kato, “Hydrothermal Sytnehsis of Cerium Oxide,” J. Am. Ceram. Soc., 79, 777-780 (1996).
    229. Y. C. Zhou and M. N. Rahaman, “Hydrothermal Synthesis and Sintering of Ultrafine CeO2 Powders,” J. Mater. Res., 8, 1680-1686 (1993).
    230. N. C. Wu, E. W. Shi, Y. Q. Zheng and W. J. Li, “Effect of Medium on Hydrothermal Synthesis of Nanocrystalline Cerium(IV) Oxide Powders,” J. Am. Ceram. Soc., 85, 2462-2468 (2002).
    231. E. Tani, M. Yoshimura and S. Sōmiya, “Crystallization and Crystal Growth of CeO2 under Hydrothermal Conditions,” J. Mater. Sci. Lett., 1, 461-462 (1982).
    232. S. Lakhwani and M. N. Rahaman, “Hydrothermal Coarsening of CeO2 Particles,” J. Mater. Res., 14, 1455-1461 (1999).
    233. Y. C. Zhou and M. N. Rahaman, “Effect of Redox Reaction on the Sintering Behavior of Cerium Oxide,” Acta Mater., 45, 3635-3639 (1997).
    234. M. Hirano and E. Kato, “The Effect of Synthesis of Ultrafine Cerium(IV) Oxide Powders,” J. Mater. Sci. Lett., 15, 1249-1250 (1996).
    235. J. S. Lee and S. C. Choi, “Crystallization Behavior of Nano-ceria Powders by Hydrothermal Synthesis Using a Mixture of H2O2 and NH4OH,” Mater. Lett., 58, 390-393 (2004).
    236. G. S. Li, S. H. Feng and L. P. Li, “Structural Stability and Valence Characteristics in Cerium Hydrothermal Systems,” J. Solid State Chem., 126, 74-79 (1996).
    237. M. Hirano and E. Kato, “Hydrothermal Synthesis of Nanocrystalline Cerium(IV) Oxide Powders,” J. Am. Ceram. Soc., 82, 786-788 (1999).
    238. M. Inoue, M. Kimura and T. Inui, “Transparent Colloidal Solution of 2 nm Ceria Particles,” Chem. Commun., 957-958 (1999).
    239. S. H. Yu, H. Cölfen and A. Fischer, “High Quality CeO2 Nanocrystals Stabilized by a Double Hydrophilic Block Copolymer,” Colloid Surf. A, 243, 49-52 (2004).
    240. X. D. Zhou, W. Huebner and H. U. Anderson, “Room-temperature Homogeneous Nucleation Synthesis and Thermal Stability Single Crystal CeO2,” Appl. Phys. Lett., 80, 3814-3816 (2002).
    241. P. L. Chen and I. W. Chen, “Reactive Cerium(IV) Oxide Powders by the Homogeneous Precipitation Method,” J. Am. Ceram. Soc., 76, 1577-1583 (1993).
    242. J. G. Li, T. Ikegami, Y. Wang and T. Mori, “Reactive Ceria Nanopowders via Carbonate Precipitation,” J. Am. Ceram. Soc., 85, 2376-2378 (2002).
    243. T. Ungár, I. D. Cernatescu, D. Louër and N. Audebrand, “Dislocations and Crystallite Size Distribution in Nanocrystalline CeO2 Obtained from an Ammonium Cerium(IV)-nitrate Solution,” J. Phys. Chem. Solid, 62, 1935-1941 (2001).
    244. M. Kamiya, E. Shimada and Y. Ikuma, “Sintering of Cerium Oxide Powder Prepared by a Homogeneous Precipitation Method,” J. Mater. Synth. Process., 6, 283-286 (1998).
    245. M. Ozawa, “Effect of Oxygen Release on the Sintering of Fine CeO2 Powder at Low Temperature,” Scripta Mater., 50, 61-64 (2004).
    246. M. Yamashita, K. Kameyama, S. Yabe, S. Yoshida, Y. Fujishiro, T. Kawai and T. Sato, “Synthesis and Microstructure of Calcia Doped Ceria as UV Filters,” J. Mater. Sci., 37, 683-687 (2002).
    247. S. Yabe, M. Yamashita, S. Momose, K. Tahira, S. Yoshida, R. Li, S. Yin and T. Sato, “Synthesis and UV-shielding Properties of Metal Oxide Doped Ceria via Soft Solution Chemical Processes,” Int. J. Inorg. Mater., 3, 1003-1008 (2001).
    248. R. Li, S. Yabe, M. Yamashita, S. Momose, S. Yoshida, S. Yin and T. Sato, “Synthesis and UV-shielding Properties of ZnO- and CaO-doped CeO2 via Soft Solution Chemical Process,” Solid State Ionics, 151, 235-241 (2002).
    249. R. Li, S. Yin, S. Yabe, M. Yamashita, S. Momose, S. Yoshida and T. Sato, “Preparation and Photochemical Properties of Nanoparticles of Ceria Doped with Zinc Oxide,” Brit. Ceram. Trans., 101, 9-13 (2002).
    250. S. Yabe and T. Sato, “Cerium Oxide for Sunscreen Cosmetics,” J. Solid State Chem., 171, 7-11 (2003).
    251. M. S. Tsai, “The Study of the Synthesis of Nano-grade Cerium Oxide Powder,” Mater. Lett., 58, 2270-2274 (2004).
    252. M. S. Tsai, “Powder Synthesis of Nano Grade Cerium Oxide via Homogeneous Precipitation and Its Polishing Performance,” Mater. Sci. Eng. B, 110, 132-134 (2004).
    253. B. Djuričić and S. Pickering, “Nanostructured Cerium Oxide: Precipitation and Properties of Weakly-agglomerated Powders,” J. Euro. Ceram. Soc., 19, 1925-1934 (1999).
    254. E. Matijević and W. P. Hsu, “Preparation and Properties of Monodispersed Colloidal Particles of Lanthanide Compounds,” J. Colloid Interf. Sci., 118, 506-523 (1987).
    255. B. Aiken, W. P. Hsu and E. Matijević, “Preparation and Properties of Monodispersed Colloidal Particles of Lanthanide Compounds: III, Yttrium(III) and Mixed Yttrium(III)/cerium(III) Systems,” J. Am. Ceram. Soc., 71, 845-853 (1988).
    256. F. Zhang, Q. Jin and S. W. Chan, “Ceria Nanoparticles: Size, Szie Distribution, and Shape,” J. Appl. Phys., 95, 4319-4326 (2004).
    257. N. Uekawa, M. Ueta, Y. J. Wu and K. Kakegawa, “Characterization of CeO2 Fine Particles Prepared by the Homogeneous Precipitation Method with a Mixed Solution of Ethylene Glycol and Polyethylene Glycol,” J. Mater. Res., 19, 1087-1092 (2004).
    258. J. G. Li, T. Ikegami, J. H. Lee and T. Mori, “Characterization and Sintering of Nanocrystalline CeO2 Powders Synthesized by a Mimic Alkoxide Method,” Acta Mater., 49, 419-426 (2001).
    259. W. P. Hsu, L. Rönnquist and E. Matijević, “Preparation and Properties of Monodispersed Colloidal Particles of Lanthanide Compounds: 2. Cerium(IV),” Langmuir, 4, 31-37 (1988).
    260. T. Masui, R. Hamada, G. Y. Adachi, T. Sakata and H. Mori, “New Method to Synthesize BN-coated Cerium Oxide Using Condensation of Boric Acid and 2,2’-Iminodiethanol,” J. Alloy Compd., 344, 148-151 (2002).
    261. X. D. Zhou, W. Huebner and H. U. Anderson, “Processing of Nanometer-scale CeO2 Particles,” Chem. Mater., 15, 378-382 (2003).
    262. P. Durán, F. Capel, D. Gutierrez, J. Tartaj and C. Moure, “Cerium(IV) Oxide Synthesis and Sinterable Powders Prepared by the Polymeric Organic Complex Solution Method,” J. Euro. Ceram. Soc., 22, 1711-1721 (2002).
    263. J. Z. Gao, Y. L. Qi, W. Yang, X. J. Guo, S. Y. Li and X. Li, “Shape Control of CeO2 Nano-particles and Synthesis of Nano-metric Solid Acid SO42-/CeO2,” Mater. Chem. Phys., 82, 602-607 (2003).
    264. S. Nakane, T. Tachi, M. Yoshinaka, K. Hirota and O. Yamaguchi, “Characterization and Sintering of Reactive Cerium(IV) Oxide Powders Prepared by the Hydrazine Method,” J. Am. Ceram. Soc., 80, 3221-3224 (1997).
    265. L. A. Bruce, M. Hoang, A. E. Anthony, E. Hughes and T. W. Turney, “Surface Area Control During the Synthesis and Reduction of High Area Ceria Catalyst Supports,” Appl. Catal. A, 134, 351-362 (1996).
    266. A. Muto, T. Bhaskar, Y. Kaneshiro, Md. A. Uddin, Y. Sakata, Y. Kusano and K. Murakami, “Utilization of Waste Biomass and Replacement of Stoichiometric Reagents for the Synthesis of Nanocrystalline CeO2, ZrO2 and CeO2-ZrO2,” Green Chem., 5, 480-483 (2003).
    267. X. Chu, W. L. Chung, L. D. Schmidt, “Sintering of Sol-gel Submicrometer Particles Studied by Transmission Electron Microscopy,” J. Am. Ceram. Soc., 76, 2115-2118 (1993).
    268. N. Uekawa, M. Ueta, Y. J. Wu and K. Kakegawa, “Synthesis of CeO2 Spherical Fine Particles by Homogeneous Precipitation Method with Polyethylene Glycol,” Chem. Lett., 854-855 (2002).
    269. D. Terribile, A. Trovarelli, J. Llorca, C. de Leitenburg, G. Dolcetti, “The Synthesis and Characterization of Mesoporous High-surface Area Ceria Prepared Using a Hybrid Organic/inorganic Route,” J. Catal., 178, 299-308 (1998).
    270. N. Audebrand, J. P. Auffrédic and D. Louër, “An X-ray Powder Diffraction Study of the Microstructure and Growth Kinetics of Nanoscale Crystallites Obtained from Hydrated Cerium Oxide,” Chem. Mater., 12, 1791-1799 (2000).
    271. M. Kamruddin, P. K. Ajikumar, R. Nithya, A. K. Tyagi and B. Raj, “Synthesis of Nanocrystalline Ceria by Thermal Decomposition and Soft-chemistry Methods,” Scripta Mater., 50, 417-422 (2004).
    272. F. Zhang, S. P. Yang, W. M. Wang, H. M. Chen, Z. H. Wang and X. B. Yu, “Preparation of Nanocrystalline Ceramic Oxide Powders in the Presence of Anionic Starburst Dendrimer,” Mater. Lett., 58, 3285-3289 (2004).
    273. R. Yang and L. Gou, “Synthesis of Nanotublar Cubic Fluorite CeO2,” Chin. J. Inorg. Chem., 20, 152-158 (2004).
    274. R. J. La, Z. A. Hu, H. L. Li, X. L. Shang and Y. Y. Yang, “Template Synthesis of CeO2 Ordered Nanowire Arrays,” Mater. Sci. Eng. A, 368, 145-148 (2004).
    275. D. Terribile, A. Trovarelli, C. de Leitenburg and G. Dolcetti, “Unusual Oxygen Storage/redox Behavior of High-surface-area Ceria Prepared by a Surfactant-assisted Route,” Chem. Mater., 9, 2676-2678 (1997).
    276. D. S. Bae, B. Lim, B. I. Kim and K. S. Han, “Synthesis and Characterization of Ultrafine CeO2 Particles by Glycothermal Process,” Mater. Lett., 56, 610-613 (2002).
    277. T. Masui, K. Fujiwara, K. Machida, and G. Adachi, “Characterization of Cerium(IV) Oxide Ultrafine Particles Prepared Using Reversed Micelles,” Chem. Mater., 9, 2197-2204 (1997).
    278. J. Zhang, X. Ju, Z. Y. Wu, T. Liu, T. D. Hu, Y. N. Xie and Z. L. Zhang, “Structural Characteristics of Cerium Oxide Nanocrystals Prepared by the Microemulsion Method,” Chem. Mater., 13, 4192-4197 (2001).
    279. H. Xu, L. Gao, H. Gu, J. Guo and D. Yan, “Synthesis of Solid, Spherical CeO2 Particles Prepared by the Spray Hydrolysis Reaction Method,” J. Am. Ceram. Soc., 85, 139-144 (2002).
    280. B. Elidrissi, M. Addou, M. Regragui, C. Monty, A. Bougrine and A. Kachouane, “Structural and Optical Properties of CeO2 Thin Films Prepared by Spray Pyrolysis,” Thin Solid Film, 297, 23-71 (2000).
    281. L. Mädler, W. J. Stark and S. E. Pratsinis, “Flame-made Ceria Nanoparticles,” J. Mater. Res., 17, 1356-1362 (2002).
    282. T. Adschiri, Y. Hakuta, K. Sue and K. Arai, “Hydrothermal Synthesis of Metal Oxide Nanoparticles at Supercritical Conditions,” J. Nanopart. Res., 3, 227-235 (2001).
    283. A. A. Galkin, B. G. Kostyuk, N. N. Kuznetsova, A. O. Turakulova, V. V. Lunin and M. Polyakov, “Unusual Approaches to the Preparation of Heterogeneous Catalysts and Supports Using Water in Subcritical and Supercritical States,” Kinet. and Catal., 42, 154-162 (2001).
    284. Y. Hakuta, S. Onai, H. Terayama, T. Adschiri and K. Arai, “Production of Ultra-fine Ceria Particles by Hydrothermal Synthesis under Supercritical Conditions,” J. Mater. Sci. Lett., 17, 1211-1213 (1998).
    285. L. Yin, Y. Wang, G. Pang, Y. Koltypin and A. Gedanken, “Sonochemical Synthesis of Cerium Oxide Nanoparticles-Effect of Additives and Quantum Size Effect,” J. Colloid Interf. Sci., 246, 78-84 (2002).
    286. Y. X. Li, X. Z. Zhou, Y. Wang and X. Z. You, “Preparation of Nano-sized CeO2 by Mechanochemical Reaction of Cerium Carbonate with Sodium Hydroxide,” Mater. Lett., 58, 245-249 (2003).
    287. T. Tsuzuki and P. G. McCormick, “Synthesis of Ultrafine Ceria Powders by Mechanochemical Processing,” J. Am. Ceram. Soc., 84, 1453-1458 (2001).
    288. X. Wang, G. Liu, Y. Liu and S. Duan, “Cerium Oxide Film Prepared from Molten Salts,” Rare Metal, 20, 95-100 (2001).
    289. Y. Zhou, R. J. Phillips and J. A. Switzer, “Electrochemical Synthesis and Sintering of Nanocrystalline Cerium (IV) Oxide Powders,” J. Am. Ceram. Soc., 78, 981-985 (1995).
    290. S. Tsunekawa, R. Sivamohan, S. Ito, A. Kasuya and T. Fukuda, “Structural Study on Monosize CeO2-x Nano-particles,” Nanostruct. Mater., 11, 141-147 (1999).
    291. J. L. G. Fierro, S. Mendioroz and A. M. Olivan, “Surface Chemistry of Cerium Oxide Prepared by an Isobaric Thermal Procedure,” J. Colloid Interf. Sci., 107, 60-69 (1985).
    292. Z. L. Wang and X. D. Feng, “Polyhedral Shapes of CeO2 Nanoparticles,” J. Phys. Chem. B, 107, 13563-13566 (2003).
    293. J. W. Mullin, “Crystallization,” Butterworth-Heinemann, Boston (1993).
    294. C. B. Murray, C. R. Kagan and M. G. Bawendi, “Synthesis and Characterization of Monodisperse Nanocrystals and Close-packed Nanocrystals Assemblies,” Annu. Rev. Mater. Sci., 30, 545-610 (2000).
    295. R. Boistelle and J. P. Astier, “Crystallization Mechanisms in Solution,” J. Cryst. Growth, 90, 14-30 (1988).
    296. H. O. K. Kirchner, “Coarsening of Grain-boundary Precipitates,” Metall. Trans., 2, 2861-2864 (1971).
    297. W. A. Tiller, “The Science of Crystallization,” Cambridge University Press, New York (1991).
    298. F. Huang, H. Z. Zhang and J. F. Banfield, “Two-stage Crystal Growth Kinetics Observed During Hydrothermal Coarsening of Nanocrystalline ZnS,” Nano Lett., 3, 373-378 (2003).
    299. B. Gilbert, H. Z. Zhang, F. Huang, M. P. Finnegan, G. A. Waychunas and J. F. Banfield, “Special Phase Transformation and Crystal Growth Pathways Observed in Nanoparticles,” Geochem. Trans., 4, 20-27 (2003).
    300. M. Fernández-Garćia, A. Martinez-Arias, J. C. Hanson and J.A. Rodriguez, “Nanostructured Oxides in Chemistry: Characterization and Properties,” Chem. Rev., 104, 4063-4104 (2004).
    301. D. C. Koningsberger and R. Prins, “X-Ray Absorption,” John Wiley & Sons, New York (1988).
    302. 李志甫, “X光吸收光譜術在觸媒特性分析上的應用,” 化學, 53, 280-293 (1995).
    303. M. Breysse, M. Guenin, B. Claudel and J. Veron, “Catalysis of Carbon Monoxide Oxidation by Cerium Dioxide,” J. Catal., 28, 54-62 (1973).
    304. C. Li, Y. Sakata, T. Arai, K. Domen, K. Maruya and T. Onishi, “Carbon Monoxide and Carbon Dioxide Adsorption on Cerium Oxide Studied by Fourier-transform Infrared Spectroscopy,” J. Chem. Soc. Faraday Trans., 85, 929-943 (1989).
    305. C. Li, Y. Sakata, T. Arai, K. Domen, K. Maruya and T. Onishi, “Adsorption of Carbon Monoxide and Carbon Dioxide on Cerium Oxide Studied by Fourier-transform Infrared Spectroscopy,” J. Chem. Soc. Faraday Trans., 85, 1451-1461 (1989).
    306. C. Binet, M. Daturi and J. C. Lavalley, “IR Study of Polycrystalline Ceria Properties in Oxidised and Reduced States,” Catal. Today, 50, 207-225 (1999).
    307. R. Q. Long, Y. P. Huang and H. L. Wan, “Surface Oxygen Species over Cerium Oxide and Their Reactivities with Methane and Ethane by Means of in situ Confocal Microprobe Raman Spectroscopy,” J. Raman Spectrosc., 28, 29-32 (1997).
    308. X. L. Zhang and K. J. Klabunde, “Superoxide (O2-) on the Surface of Heat-treated Ceria. Intermediates in the Reversible Oxygen Transformation,” Inorg. Chem., 31, 1706-1709 (1992).
    309. Y. Madier, C. Descorme, A. M. Le Govic and D. Duprez, “Oxygen Mobility in CeO2 and CexZr(1-x)O2 Compounds: Study by CO Transient Oxidation and 18O/16O Isotopic Exchange,” J. Phys. Chem. B, 103, 10999-11006 (1999).
    310. J. C. Conesa, “Computer Modeling of Surfaces ad Defects on Cerium Dioxide,” Surf. Sci., 339, 337-352 (1995).
    311. T. X. T. Sayle, S. C. Parker and C. R. A. Catlow, “The Role of Oxygen Vacancies on Ceria Surfaces in the Oxidation of Carbon Monoxide,” Surf. Sci., 316, 329-336 (1994).
    312. A. Q. Wang, P. Punchaipetch, R. M. Wallace, T. D. Golden, “X-ray Photoelectron Spectroscopy Study of Electrodeposited Nanostructured CeO2 Films,” J. Vac. Sci. Technol. B, 21, 1169-1175 (2003).
    313. P. Burroughs, A. Hamnett, A. F. Orchard, G. Thornton, “Satellite Structure in the X-ray Photoelectron Spectra of Some Binary and Mixed Oxides of Lanthanum and Cerium,” J. Chem. Soc. Dalton Trans., 17, 1686-1698 (1976).
    314. X. D. Zhou and W. Huebner, “Size-induced Lattice Relaxation in CeO2 Nanoparticles,” Appl. Phys. Lett., 79, 3512-3514 (2001).
    315. K. Burger, “Solvation: Ionic and Complex Formation Reactions in Non-aqueous Solution,” Elsevier, Amsterdam (1983).
    316. J. N. Israelachvili, “Intermolecular and Surface Forces,” Academic Press, London (1992).
    317. A. S. Myerson, “Molecular Modeling Applications in Crystallization,” Cambridge (1999).
    318. M. Z. C. Hu, E. A. Payzant and C. H. Byers, “Sol-gel and Ultrafine Particle Formation via Dielectric Tuning of Inorganic Salt-alcohol-water Solutions,” J. Colloid Interf. Sci., 222, 20-36 (2000).
    319. W. Li and L. Gao, “Nano ZrO2 (Y2O3) Particles Processing by Heating of Ethanol-aqueous salt Solutions,” Ceram. Int., 27,543-546 (2001).
    320. JCPD database: 81-0792.
    321. G. Åkerlöf, “Dielectric Constants of Some Organic Solvent-water Mixtures at Various Temperatures,” J. Am. Chem. Soc., 54, 4125-4139 (1932).
    322. S. J. Gregg and K. S. W. Sing, “Adsorption, Surface Area and Porosity,” Academic Press, London (1982).
    323. J. F. Lee, M. T. Tang, W. C. Shih and R. S. Liu, “Ce K-edge EXAFS Study of Nanocrystalline CeO2,” Mater. Res. Bull., 37, 555-562 (2002).
    324. P. Nachimuthu, W. C. Shih, R. S. Liu, L. Y Yang and J. M. Chen, “The Study of Nanocrystalline Cerium Oxide by X-ray Absorption Spectroscopy,” J. Solid State Chem., 149, 408-413 (2000).
    325. E. Fonda, D. Andreatta, P. E. Colavita and G. Vlaic, “EXAFS Analysis of the L3 Edge of Ce in CeO2: Effects of Multielectron Excitations and Final-state Mixed Valence,” J. Synchrontron Rad., 6, 34-42 (1999).
    326. E. Mamontov, T. Egami, W. Dmowski and C. C. Kao, “X-ray Absorption Scattering Studies of Single-crystal CeO2,” J. Phys. Chem. Solid, 62, 819-823 (2001).
    327. T. X. T. Sayle, S. C. Parker and D. C. Sayle, “Shape of CeO2 Nanoparticles Simulated Amorphisation and Recrystallisation,” Chem. Commun., 2438-2439 (2004).
    328. Z. L. Wang, “Transmission Electron Microscopy of Shape-controlled Nanocrystals and Their Assemblies,” J. Phys. Chem. B, 104, 1153-1175 (2000).
    329. I. N. Bhattacharya, J. K. Pradhan, P. K. Gochhayat and S. C. Das, “Factors Controlling Precipitation of Finer Size Alumina Trihydrate,” Int. J. Miner. Process., 65, 109-124 (2002).
    330. D. F. Mullica, J. D. Oliver and W. O. Milligan, “Cerium Trihydroxide,” Acta Cryst. B, 35, 2668-2670 (1978).
    331. S. Mroczkowski, J. Eckert, H. Meissner and J. C. Doran, “Hydrothermal Growth of Single Crystals of Rare Earth Hydroxides,” J. Cryst. Growth, 7, 333-342 (1970).
    332. R. G. Haire, D. R. Dillin, W. O. Milligan and M. L. Beasley, “The Effects of Aging and Self-irradiation on Crystalline 147Promethium Trihydroxide,” J. Inorg. Nucl. Chem., 39, 53-57 (1977).
    333. X. Wang and Y. D. Li, “Synthesis and Characterization of Lanthanide Hydroxide Single-crystal Nanowires,” Angew. Chem. Int. Ed., 41, 4790-4793 (2002).
    334. L. Yan, J. Zhuang, X. M. Sun, Z. X. Deng and Y. D. Li, “Formation of Rod-like Nanocrystallites under Hydrothermal Conditions and the Conversion to MgO Nanorods by Thermal Dehydration,” Mater. Chem. Phys., 76, 119-122 (2002).
    335. Y. Cudennec and A. Lecerf, “The Transformation of Cu(OH)2 into CuO, Revisited,” Solid State Sci., 5, 1471-1474 (2003).
    336. S. Y. Lian, E. Wang, Z. H. Kang, Y. P. Bai, L. Gao, M. Jiang, C. G. Hu and L. Xu, “Synthesis of Magnetite Nanorods and Porous Hematite Nanorods,” Solid State Commun., 129,485-490 (2004).
    337. F. Larachi, J. Pierre, A. Adnot and A. Bernis, “Ce 3d XPS Study of Composite CexMn1-xO2-y Wet Oxidation Catalysts,” Appl. Surf. Sci., 195, 236-250 (2002).
    338. S. Tsunekawa, R. Sahara, Y. Kawazoe and K. Ishikawa, “Lattice Relaxation of Monosize CeO2-x Nanocrystalline Particles,” Appl. Surf. Sci., 152, 53-56 (1999).
    339. S. Tsunekawa, S. Ito and Y. Kawazoe, “Surface Structures of Cerium Oxide Nanocrystalline Particles from the Size Dependence of the Lattice Parameters,” Appl. Phys. Lett., 85, 3845-3847 (2004).
    340. O. Levenspiel, “Chemical Reaction Engineering,” John Wiley & Sons, New York (1999).
    341. M. Lundburg, B. Skårman, L. R. Wallenberg, “Crystallography and Porosity Effects of CO Conversion on Mesoporous CeO2,” Micropor. Mesopor. Mater., 69, 187-195 (2004).
    342. M. F. Luo, Y. J. Zhong, X. X. Yuan and X. M. Zheng, “TPR and TPD Studies of CuO/CeO2 Catalysts for Low Temperature CO Oxidation,” Appl. Catal. A, 162, 121-131 (1997).
    343. A. Bensalem, F. Bozon-Verduraz, M. Delamar and G. Bugli, “Preparation and Characterization of Highly Dispersed Silica-supported Ceria,” Appl. Catal. A, 121, 81-93 (1995).
    344. J. B. Wang, W. H. Shih and T. J. Huang, “Study of Sm2O3-doped CeO2/Al2O3-supported Copper Catalyst for CO Oxidation,” Appl. Catal. A, 203, 191-199 (2000).
    345. R. Cracium, “Characterization of Mixed Amorphous/crystalline Cerium Oxide Supported on SiO2,” Solid State Ionics, 110, 83-93 (1998).
    346. G. Blyholder and L. Neff, “Rotation of Physically Adsorbed CO,” J. Chem. Phys., 36, 3503-3504 (1962).
    347 L. H. Little, “Infrared Spectra of Adsorbed Species,” Academic Press, New York (1966).

    下載圖示 校內:立即公開
    校外:2005-07-11公開
    QR CODE