簡易檢索 / 詳目顯示

研究生: 于沛雅
Yu, Pei-Ya
論文名稱: 氣候變遷下海岸水庫可靠度分析-以東港溪與林邊溪流域為例
Reliability Analysis of Coastal Reservoirs under Climate Change: A Case Study of Donggang River and Linbian River Basins
指導教授: 張駿暉
Jang, Jiun-Huei
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 178
中文關鍵詞: 氣候變遷海岸水庫可靠度流量輸砂量
外文關鍵詞: Climate change, Coastal reservoir, Reliability, Discharge, Sediment transport
相關次數: 點閱:39下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著全球氣候變遷加劇,台灣面臨嚴峻的水資源管理挑戰。氣候變遷引發的極端天氣事件,如長期乾旱、豪雨和頻繁颱風,導致水資源分布不均,威脅農業、工業和民生用水的安全。現有水庫難以應對降雨時間和強度的變化,造成供水不穩定。興建海岸水庫被視為潛在的解決方案,因其具備能量消耗低、溫室氣體排放少、建造和維護成本低、生態衝擊小等優勢,並可有效儲存雨水以應對乾旱期的用水需求。本研究旨在評估東港溪流域及林邊溪流域在大鵬灣興建海岸水庫的可行性。採用HEC-HMS降雨逕流模式和SRH-2D水理輸砂模式,對基期與未來時期的逕流量與輸砂量進行模擬,進行趨勢分析、變化分析及可靠度分析。具體目標包括分析逕流量與輸砂量的長期變化趨勢、比較不同時期的變化情形,並評估海岸水庫供水的穩定性和可靠性。
    研究結果顯示,HEC-HMS和SRH-2D模式的驗證結果準確可靠。趨勢分析表明,東港溪和林邊溪流域在不同氣候變遷情境下的逕流量和輸砂量變化顯著,特別是在SSP2-4.5情境下未來短期和中期的增長趨勢明顯。水庫容量和可靠出水量的評估顯示,不同氣候情境下最大所需庫容有所變化,需水量的可靠度在高排放情境下波動較大。綜合評估表明,大鵬灣海岸水庫在中等排放情境下具備較高的可行性和可靠性,而在高排放情境下需採取更加靈活的管理措施以應對未來可能的挑戰。
    本研究結果為未來水資源管理和海岸水庫規劃提供了科學依據,建議決策者在規劃和管理大鵬灣海岸水庫時需考慮不同氣候情境下的長期不確定性,並採取適應性管理措施,以確保未來水資源的穩定供應。

    As global climate change intensifies, Taiwan faces severe challenges in water resource management due to extreme weather events such as prolonged droughts, heavy rainfall, and frequent typhoons. Such events lead to uneven water distribution and threaten agricultural, industrial, and domestic water security. To cope with these variations, coastal reservoirs are considered a potential solution due to their low energy consumption, low greenhouse gas emissions, lower construction and maintenance costs, low ecological impact, and effective rainwater storage capabilities. In this study, the feasibility of using Dapeng Bay as a coastal reservoir was investigated by assessing the water resources of the Donggang River Basin and the Linbian River Basin. Using the HEC-HMS rainfall-runoff model and the SRH-2D hydrological and sediment transport model, simulations of runoff and sediment transport were conducted for both the baseline and future periods. The objectives include analyzing long-term trends, comparing changes across periods, and assessing the stability and reliability of the coastal reservoir's water supply. Results indicate that the HEC-HMS and SRH-2D models are accurate and reliable. Significant variations in runoff and sediment transport were observed under different climate change scenarios, particularly showing an increase in the short to medium term under the SSP2-4.5 scenario. Evaluations of reservoir capacity and water output reliability demonstrate that maximum required reservoir capacity changes with greater fluctuations in water demand reliability under high emission scenarios. In conclusion, the Dapeng Bay coastal reservoir is feasible and reliable under medium emission scenarios, while high emission scenarios require flexible management strategies. These findings provide a scientific basis for future water resource management and coastal reservoir planning, recommending that policymakers consider long-term uncertainties under various climate scenarios and adopt adaptive measures to ensure stable water supply.

    摘要I 誌謝V 目錄VI 表目錄IX 圖目錄XII 第一章 緒論1 1.1 研究緣起1 1.2 研究目的2 1.3 研究架構3 1.4 文獻回顧4 1.4.1 水庫可靠度分析4 1.4.2 世界各國海岸水庫現況6 1.4.3 水文、水理、輸砂模式之應用10 1.4.4 氣候變遷對水資源之影響12 第二章 研究區域與資料14 2.1 地文資料概述14 2.2 水文氣象資料17 2.2.1 雨量及流量資料17 2.2.2 網格化雨量觀測資料20 2.2.3 潮位資料23 2.3 河床質粒徑資料26 2.4 氣候變遷情境資料29 2.4.1 氣候變遷情境選擇29 2.4.2 氣候變遷期程設定31 2.4.3 全球環流模式選擇31 第三章 研究方法34 3.1 HEC-HMS降雨逕流模式35 3.1.1 降雨損失方法36 3.1.2 直接逕流轉換方法42 3.1.3 河道演算42 3.1.4 模式參數建置44 3.1.5 模式驗證54 3.2 SRH-2D水理輸砂模式59 3.2.1 水理控制方程式60 3.2.2 輸砂控制方程式61 3.2.3 底床動力學63 3.2.4 模式參數設置64 3.2.5 模式驗證70 3.3 趨勢分析72 3.3.1 Mann-Kendall趨勢檢定法72 3.3.2 Theil-Sen斜率推估法73 3.4 海岸水庫可靠度分析74 3.4.1 缺水指標75 3.4.2 累積流量曲線76 3.4.3 設定假設條件78 3.4.4 基於庫容和流量管理的水庫可靠度評估方法79 3.4.5 水庫可靠性曲線81 第四章 結果與討論82 4.1 HEC-HMS模式驗證成果82 4.1.1 時流量實測與模擬驗證成果82 4.1.2 日流量實測與模擬驗證成果84 4.2 SRH-2D模式驗證87 4.2.1 模型參數敏感度測試87 4.2.2 底床驗證成果89 4.3 逕流量與輸砂量趨勢分析92 4.3.1 歷史流量站流量變化趨勢分析92 4.3.2 基期出海口逕流量與輸砂量趨勢分析95 4.3.3 氣候變遷下出海口逕流量與輸砂量趨勢分析97 4.4 與基期相比未來逕流量與輸砂量變化分析103 4.4.1 年尺度逕流量與輸砂量變化分析103 4.4.2 月季尺度逕流量與輸砂量變化分析111 4.5 海岸水庫可靠度分析120 4.5.1 水庫容量需求分析120 4.5.2 不同水庫容量之可靠出水量121 4.5.3 供水量與缺水月數統計124 4.5.4 缺水指標分析129 4.5.5 可靠度分析133 第五章 結論與建議140 5.1 結論140 5.2 建議141 參考文獻144 附錄152

    1.Asefa, T., Clayton, J., Adams, A., & Anderson, D. (2014). Performance evaluation of a water resources system under varying climatic conditions: Reliability, resilience, vulnerability and beyond. Journal of Hydrology, 508, 53–65.
    2.Baek, J.-Y., Guerreiro, C. V., Kim, J., Nam, J., & Jo, Y.-H. (2024). Coastal environmental changes after the saemangeum seawall construction. Frontiers in Marine Science, 10. https://doi.org/10.3389/fmars.2023.1307218
    3.Beven, K. J., & Kirkby, M. J. (1979). A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Journal.
    4.Biglarbeigi, P., Strong, W. A., Finlay, D., McDermott, R., & Griffiths, P. (2020). A hybrid model-based adaptive framework for the analysis of climate change impact on reservoir performance. Water Resources Management, 34(13), 4053–4066. https://doi.org/10.1007/s11269-020-02654-w
    5.Bijl, D.L., Biemans. H., Bogaart. P.W., Dekker. S.C., Doleman. J.C., Stehfest, E., van Vuuren, D.P. (2018). A global analysis of future water deficit based on different allocation mechanisms. Water Resources Research 54(8), 5803-5824.
    6.Birds korea. (2008). Saemangeum and the Saemangeum shorebird monitoring program(SSMP) 2006-2008. Retrieved from website: http://www.birdskorea.org/ Habitats/Wetlands/Saemangeum/BK-HA-Saemangeum-Mainpage.shtml
    7.Chattopadhyay, S., Szalkiewicz, E., Dytkiewicz, M., Marcinkowski, P., Miroslaw-Swiatek, D., Oglecki, P., & Piniewski, M. (2023). Development of an integrated modelling framework to evaluate impacts of pressures on habitat conditions and riverine biota. Ecohydrology. https://doi.org/10.1002/eco.2585
    8.Chaves, H. M. L., da Silva, C. C., & Fonseca, M. R. S. (2023). Reservoir reliability as affected by climate change and strategies for adaptation. Water, 15(13), 2323. https://doi.org/10.3390/w15132323
    9.Chinese Academy of Sciences. (2020). Climate Change Impacts on Water Resources in China.
    10.Chow, V. T. (1959). Open-channel Hydraulics. Mc-Graw Hill, New York.
    11.Chow, V. T., Maidment, D. R., & Mays, L. W. (1988). Applied Hydrology.
    12.Cunge, J. A. (1969). On the Subject of a Flood Propagation Computation Method (Muskingum Method), Journal of Hydraulic Research, Vol. 7, No. 2, 205-230.
    13.Delpla, I., Jung, A.-V. ., Baures, E., Clement, M., & Thomas, O. (2009). Impacts of climate change on surface water quality in relation to drinking water production. Environment International, 35(8), 1225–1233. https://doi.org/10.1016/j.envint. 2009.07.001
    14.Earth.com. (2017). Qingcaosha freshwater reservoir in shanghai. Retrieved from Earth.com website: https://www.earth.com/image/qingcaosha-reservoir-shanghai/
    15.EPA. (2018). Climate Change and Water Quality.
    16.ETA Unknown. (2020). Lake Alexandrina. Estimated Time of Arrival Unknown. Retrieved from https://www.etaunknown.com/expeditions/murray-river/lake-alexandrina
    17.Famiglietti, J. S. (2014). The global groundwater crisis. Nature Climate Change, 4(11), 945–948. https://doi.org/10.1038/nclimate2425
    18.Finterest. (2021). The wetlands of Lake Alexandrina: home to a unique population of Southern pygmy perch. Retrieved from https://finterest.au/the-wetlands-of-lake-alexandrina-home-to-a-unique-population-of-southern-pygmy-perch/
    19.Gilbert, R.O. (1987). Statistical Methods for Environmental Pollution Monitoring, John Wiley and Sons, New York.
    20.Gleick, P., Iceland, C., & Trivedi, A. (2020). Ending conflicts over water: Solutions to water and security challenges. WRI Publications. https://doi.org/10.46830/wrirpt.19.00081
    21.Greimann, B., Lai, Y., & Huang, J. (2008). Two-dimensional total sediment load model equations. Journal of Hydraulic Engineering, 134(8), 1142-1146.
    22.Hashimoto, T., Stedinger, J. R., & Loucks, D. P. (1982). Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation. Water Resources Research, 18(1), 14–20.
    23.Hazbavi, Z., Baartman, J. E. M., Nunes, J. P., Keesstra, S. D., & Sadeghi, S. H. (2018). Changeability of reliability, resilience and vulnerability indicators with respect to drought patterns. Ecological Indicators, 87, 196–208.
    24.Hirsch, R.M., J.R. Slack, and R.A. Smith. (1982). Techniques of trend analysis for monthly water quality data , Water Resources Research 18(1):107-121.
    25.International Water Association, IWA. (2022). Coastal reservoirs: An untapped resource? Retrieved from The Source website: https://thesourcemagazine.org/coastal-reservoirs-an-untapped-resource/
    26.IPCC. (2021). Climate Change 2021: The Physical Science Basis.
    27.IPCC. (2022). Climate change 2022: Impacts, adaptation and vulnerability. Retrieved from IPCC Sixth Assessment Report website: https://www.ipcc.ch/report/ar6/wg2/
    28.IWRM Action Hub. (2022). IWRM Explained . Retrieved from https://iwrmactionhub. org/about/iwrm-explained
    29.Jiang, Y., Xu, C., Wu, X., Chen, Y., Han, W., Gin, K., & He, Y. (2018). Occurrence, seasonal variation and risk assessment of antibiotics in qingcaosha reservoir. Water, 10(2), 115. https://doi.org/10.3390/w10020115
    30.Jin, G., Mo, Y., Li, M., Tang, H., Qi, Y., Li, L., Barry, D. A. (2019) Desalinization and salinization: a review of major challenges for coastal reservoirs. Journal of Coastal Research 35(3), 664-672.
    31.Kendall, M. G. (1975). Rank Correlation Methods. Charles Griffin, London.
    32.Kerala Tourism. (2024). Thanneermukkom Bund. Retrieved from https://www.keralatourism.org/kumarakom/benefits-thanneermukkom-bund.php
    33.Koh, C., Ryu, J., & Khim Jong Seong. (2010). The saemangeum: History and controversy. Han-Guk Haeyang Hwan-Gyeongeneoji Hakoeji, 13(4), 327–334.
    34.Kolathayar, S., Amala Krishnan, U.s., Sitharam, T. G. (2021) Appraisal of Thanneermukkom bund as a coastal reservoir in Kuttanad, Kerala. Journal of Applied Water Engineering and Research 9, 324–335.
    35.Kundzewicz, Z. W., Matczak, P., Otto, I. M., & Otto, P. E. (2020). From “atmosfear” to climate action. Environmental Science & Policy, 105, 75–83. https://doi.org/10.1016/j.envsci.2019.12.012
    36.Lai, O. (2022, April 8). The taiwan water shortage dilemma. Retrieved from Earth.org website: https://earth.org/the-taiwan-water-shortage-dilemma/
    37.Lee, C.H., Lee, B.Y., Chang, W.K., Hong, S.J., Song, S.J., Park, J.S., Kwon, B.O., Khim. J.S. (2014). Environmental and ecological effects of Lake Shihwa reclamation project in South Korea: A review. Ocean and Coastal Management 102, 545-558.
    38.Linsley, Ray K., Franzini, Joseph B., Freyberg, David L. (1992). Water-resources engineering. George Tchobanoglous, 4thEdition, McGraw-Hill.
    39.Liu, W.-C., & Chan, W.-T. (2016). Assessment of climate change impacts on water quality in a tidal estuarine system using a three-dimensional model. Water, 8(2), 60. https://doi.org/10.3390/w8020060
    40.Lo, W.-C., Su, H., & Shih, D.-S. (2022). Integrating multiple downscaling simulations with continuous in-situ monitoring to assess riverbed scouring. Journal of Hydrology, 610, 127841. https://doi.org/10.1016/j.jhydrol.2022.127841
    41.Mann, H.B. (1945). Non-parametric tests against trend, Econometrica, 13:245-259.
    42.Meyer-Peter, E., & Müller, R. (1948). Formulas for bed-load transport. Paper presented at the IAHSR 2nd meeting, Stockholm, appendix 2.
    43.Nguyen, H., Mehrotra, R., & Sharma, A. (2020). Assessment of climate change impacts on reservoir storage reliability, resilience, and vulnerability using a multivariate frequency bias correction approach. Water Resources Research, 56(2). https://doi.org/10.1029/2019wr026022
    44.Milly, P. C. D., & Dunne, K. A. (2020). Colorado river flow dwindles as warming-driven loss of reflective snow energizes evaporation. Science, 367(6483), 1252–1255. https://doi.org/10.1126/science.aay9187
    45.Miller, W. A., and Jean A. Cunge. (1975). Simplified equations of unsteady flow. Unsteady flow in open channels, 1, 183-257.
    46.Ministry of Water Resources of China. (2018). Water Resources Bulletin.
    47.Murray–Darling Basin Authority[MDBA]. (2024). Lake Alexandrina (Calculated) Murray. Retrieved from https://livedata.mdba.gov.au/lake-alexandrina-calculated
    48.Myhre, G., Alterskjær, K., Stjern, C. W., Hodnebrog, Ø., Marelle, L., Samset, B. H., … Stohl, A. (2019). Frequency of extreme precipitation increases extensively with event rareness under global warming. Scientific Reports,9(1). https://doi.org/10.1038/ s41598-019-52277-4
    49.N. Moriasi, D., W. Gitau, M., Pai, N., & Daggupati, P. (2015). Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria. Transactions of the ASABE, 58(6), 1763-1785
    50.NASA Earth Observatory. (2017). Fresh water for shanghai. Retrieved from https://earthobservatory.nasa.gov/images/89996/fresh-water-for-shanghai
    51.NASA Sea Level Change Team, IPCC AR6 Sea Level Projection Tool, URL: https://sealevel.nasa.gov/ipcc-ar6-sea-level-projection-tool
    52.NOAA. (2019). Climate Change Indicators: Heavy Precipitation.
    53.Parker, G. (1990). Surface-based bedload transport relation for gravel rivers. Journal of Hydraulic Research, 28(4), 417-436.
    54.Phillips, B. C., & Sutherland, A. J. (1989). Spatial lag effects in bed load sediment transport. Journal of Hydraulic Research, 27(1), 115-133.
    55.Ponce, V. M., and V. Yevjevich. (1978). Muskingum-Cunge method with variable parameters. Journal of the Hydraulics Division, ASCE, Vol. 104, No. HY12, December, 1663-1667.
    56.Ponce, V. M. (2020). Muskingum-Cunge method explained. Online article.
    57.RMS. (2016). Taiwan Typhoon Model.
    58.Rotterdam Experience. (2022). Delta Works Tour. Retrieved from https://rotterdamexperience.com/tour/delta-works/
    59.Sediqi, M. N., Shiru, M. S., Nashwan, M. S., Ali, R., Abubaker, S., Wang, X., … Manawi, S. M. A. (2019). Spatio-Temporal pattern in the changes in availability and sustainability of water resources in afghanistan. Sustainability, 11(20), 5836.
    60.Sen, P.K. (1968). Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association, 63:1379-1389.
    61.Singapore’s National Water Agency, PUB. (2023). Retrieved from PUB, Singapore’s National Water Agency website: https://www.pub.gov.sg/public/places-of-interest/marina-barrage
    62.Sitharam, T. G. (2017). Efficacy of coastal reservoirs to address india’s water shortage by impounding excess river flood waters near the coast. Journal of Sustainable Urbanization. Planning and Progress, 2(2), 49–54. https://doi.org/10.26789/ jsupp.2017.02.008
    63.Sitharam, T.G., Yang, S.-Q., Falconer, R., Sivakumar, M., Jones, B., Sreevalsa Kolathayar, & Lim Sinpoh. (2020). Sustainable water resource development using coastal reservoirs. Butterworth-Heinemann.
    64.Su, M., Zhu, Y.P., Jia, Z.Y., Liu, T.T., Yu, J.W>, Burch, M., M. Yang (2021) Identification of MIB producers and odor risk assessment using routine data: A case study of an estuary drinking water reservoir. Water Research 192, 116848.
    65.Taylor, R., Scanlon, B., Doell, P., Rodell, M., Beek, R., Wada, Y., Longuevergne, L., Leblanc, M., Famiglietti, J., Edmunds, M., Konikow, L., Green, T., Chen, J., Taniguchi, M., Bierkens, M. F. P., Macdonald, A., Fan, Y., Maxwell, R., Yechieli, Y., & Treidel, H. (2013). Ground water and climate change. Nature Climate Change, 3, 322-329. https://doi.org/10.1038/nclimate1744
    66.Teng, T.-Y., Liu, T.-M., Tung, Y.-S., & Cheng, K.-S. (2021). Converting Climate Change Gridded Daily Rainfall to Station Daily Rainfall—A Case Study at Zengwen Reservoir. Water, 13(11), 1516.
    67.The Standard. (2017). Plover Cove housing plan floated. The Standard Newspapers Publishing Ltd. Retrieved from https://www.thestandard.com.hk/section-news/section/11/185579/Plover-Cove-housing-plan-floated
    68.Theil, H. (1950). A rank invariant method of linear and polynomial regression analysis, Part 3.Netherlands Akademie van Wettenschappen, Proceedings, 53: 1397-1412.
    69.UN world water development report 2021. (2021). Retrieved from UN-Water website: https://www.unwater.org/publications/un-world-water-development-report-2021
    70.UNFCCC. (2020). Climate Change and Water Resources.
    71.United Nations. (2022). Water - at the center of the climate crisis. Retrieved from United Nations website: https://www.un.org/en/climatechange/science/climate-issues/water
    72.United Nations Environment Programme [UNEP]. (2023). IWRM Data Portal. URL: https://iwrmdataportal.unepdhi.org/interactive-map
    73.U.S. Department of Transportation Federal Highway Administration. (2022). SRH-2D Tutorial Sediment Transport Modeling “SMS version 13.1”.
    74.US Army Corps of Engineers. (USACE) (2016). Hydrologic Modeling System HEC-HMS User’s Manual ”Version 4.2”. Hydrologic Engineering Center.
    75.USGS. (2020). Climate Change and North American River Basins.
    76.Van Rijn, L. C. (1984). Sediment transport, part II: Suspended load transport. Journal of Hydraulic Engineering.
    77.Vogel, R. M., Fennessey, N. M., & Bolognese, R. A. (1995). Storage-Reliability-Resilience-Yield relations for northeastern united states. Journal of Water Resources Planning and Management, 121(5), 365–374. https://doi.org/10.1061/(asce)0733-9496(1995)121:5(365).
    78.Vörösmarty, C. J., Stewart-Koster, B., Green, P. A., Boone, E. L., Flörke, M., Fischer, G., … Stifel, D. (2021). A green-gray path to global water security and sustainable infrastructure. Global Environmental Change, 70, 102344. https://doi.org/10.1016/j.gloenvcha.2021.102344
    79.Wang, S.-J., Lee, C.-H., Yeh, C.-F., Choo, Y. F., & Tseng, H.-W. (2021). Evaluation of climate change impact on groundwater recharge in groundwater regions in taiwan. Water, 13(9), 1153. https://doi.org/10.3390/w13091153
    80.Wang, Y., Hsu, H., Chen, C., Tseng, W., Hsu, P.-C., Lin, C., … Shiu, C. (2021). Performance of the taiwan earth system model in simulating climate variability compared with observations and CMIP6 model simulations. Journal of Advances in Modeling Earth Systems, 13(7). https://doi.org/10.1029/2020ms002353
    81.Water Supplies Department[WSD Gov HK]. (2020). WSD-plover cove reservoir. Retrieved from www.wsd.gov.hk website: https://www.wsd.gov.hk/en/customer-services/other-customer-services/fishing-in-reservoirs/brief-introduction-of-reservoirs/plover-cove-reservoir/index.html
    82.Water Technology. (2024). Delta Works Flood Protection, Rhine-Meuse-Scheldt Delta, Netherlands. Retrieved from https://www.water-technology.net/projects/delta-works-flood-netherlands/
    83.Whitehead, P., Wilby, R., Battarbee, R., Kernan, M., & Wade, A. (2009). A Review of the Potential Impacts of Climate Change on Surface Water Quality. Hydrological Sciences Journal/Journal des Sciences Hydrologiques, 54. https://doi.org/10.1623/hysj.54.1.101
    84.WHO. (2015). The Effects of Climate Change on Water Quality: Algal Blooms.
    85.Wilcock, P. R., & Crowe, J. C. (2003). Surface-based transport model for mixed-size sediment. Journal of Hydraulic Engineering, 129(2), 120-128.
    86.WMO. (2017). Water and Climate Change: The Impact on Global Water Resources.
    87.World Bank. (2013). Droughts and Floods: Understanding the Impacts of Climate Change.
    88.Wu, S.-J., Kuo, C.-Y., Yeh, K.-C., Wang, C.-D., & Wang, W.-J. (2021). Reliability analysis for reservoir water supply due to uncertainties in hydrological factors, rainfall-runoff routing and operating rule curves. Journal of Hydro-Environment Research, 34, 24–45. https://doi.org/10.1016/j.jher.2021.01.002
    89.Wu, W., Wang, S.S.Y., and Jia, Y. (2000). “Non-Uniform Sediment Transport in Alluvial Rivers,” Journal of Hydraulic Research, 38, No.6, 427-434.
    90.Yang, C.T., and Molinas, A. (1996). Sediment Transport in the Yellow River. Journal of Hydraulic Engineering, ASCE, Vol.122, No.5, 237-244
    91.Yang, S., Liu, J., Lin, P., & Jiang, C. (2013). Coastal reservoir strategy and its applications. Retrieved from www.intechopen.com website: https://www.intechopen.com/chapters/44304
    92.Yang, S.-Q. (2019). Historical review of existing coastal reservoirs and its applications. 38th IAHR World Congress-Water: Connecting the World. https://doi.org/10.3850/38wc092019-0688
    93.Zhang, K., Shalehy, M. H., Ezaz, G. T., Chakraborty, A., Mohib, K. M., & Liu, L. (2022). An integrated flood risk assessment approach based on coupled hydrological-hydraulic modeling and bottom-up hazard vulnerability analysis. Environmental Modelling & Software, 148, 105279. https://doi.org/10.1016/j.envsoft.2021.105279
    94.Zou, H., Liu, D., Guo, S., Xiong, L., Liu, P., Yin, J., … Shen, Y. (2019). Quantitative assessment of adaptive measures on optimal water resources allocation by using reliability, resilience, vulnerability indicators. Stochastic Environmental Research and Risk Assessment, 34(1), 103–119.
    95.行政院農業部林業及自然保育署屏東分署(2011)。林邊溪上游集水區整體治理規劃。宇真工程顧問有限公司。
    96.交通部中央氣象署。SafeOcean海象環境資訊平台。URL: https://safesee.cwb.gov.tw/V2/
    97.交通部中央氣象署。CODiS氣候資料服務系統。URL: https://codis.cwa.gov.tw/
    98.宋永鑾編譯(1995)。水資源工程學(水文學)第四版。
    99.林修立、童裕翔、王俊寓、林士堯(2023)。AR6統計降尺度雨量資料生產履歷(1.0版)。臺灣氣候變遷推估資訊與調適知識平台。
    100.屏東縣政府(2020)。「流域綜合治理計畫」屏東縣管河川林邊溪水系治理規劃檢討。
    101.陳俊安(2005)。應用 HEC-HMS 探討水文模式之參數特性。國立屏東科技大學,碩士論文。
    102.國家災害防救科技中心。全球災害事件簿。URL: https://den1.ncdr.nat.gov.tw/
    103.經濟部水利署。水文資訊網整合服務系統。URL: https://gweb.wra.gov.tw/hydroinfo/
    104.經濟部水利署(2019)。出流管制計畫書與規劃書檢核基準及洪峰流量計算方法。
    105.經濟部水利署水利規劃試驗所(2022)。SRH-2D水理數值模式中文使用手冊。
    106.經濟部水利署水利規劃試驗所(2022)。氣候變遷對重要供水水系水源水量影響分析。
    107.經濟部水利署第七河川局(2010)。東港溪下游段流路穩定及成效評估。
    108.經濟部水利署第七河川局(2015)。東港溪下游段治理規劃檢討(麟洛溪排水以下至出海口)。
    109.經濟部水利署第七河川局(2021)。東港溪治理規劃與河川區域勘測檢討(1/2)河川區域勘測報告。禹安工程顧問股份有限公司。
    110.臺灣氣候變遷推估資訊與調適知識平台計畫(2023)。網格化觀測雨量V2版資料資料生產履歷。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE