簡易檢索 / 詳目顯示

研究生: 洪子敏
Hong, Tzu-Min
論文名稱: 空載光達於森林地區之反射強度值校正
ALS intensity correction for a forest area
指導教授: 王驥魁
Wang, Chi-Kuei
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 49
中文關鍵詞: 相對反射強度值校正空載光達光達方程式非朗伯表面
外文關鍵詞: Relative intensity correction, Airborne laser scanning, LiDAR equation, non-lambertian
相關次數: 點閱:116下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於現今甚少針對森林地區進行空載光達反射強度值校正之研究,本研究選定南臺灣一亞熱帶森林,評估森林地區相對反射強度值校正之可行性。規劃以單一航線,獲取六組掃描參數一致但航高不同之空載光達資料,航高從1403公尺至2745公尺,包含兩個飛行方向。
    於測區內選定一均質之柏油路表面,藉由多重航高估算本研究區域之反射強度值校正參數。本研究發現飛機航向之改變會影響空載光達接收到之反射強度值,本研究稱此現象為「heading phenomenon」。根據本研究資料顯示,校正參數之估算會直接受到此現象影響,於處理資料時須謹慎注意。本研究之反射強度值校正考慮「heading phenomenon」、雷射能量隨距離傳播之衰減、大氣吸收散射之效應、因地形起伏導致之雷射入射角變化以及地表為非朗伯表面。
    使用 ISODATA非監督式分類評估校正成果,雖然森林地區並未滿足光達方程式之假設,但據分類成果顯示,經完整反射強度值之校正後可消除資料間不同航高、航向之差異,達到有效區分地物之成果,其分類精度達到83.32%。

    This study applied the relative intensity correction for the ALS data of a subtropical forestry area to evaluate the effectiveness of intensity correction in southern Taiwan. Our ALS data contains six flight strips with the altitudes varied from 1403 m to 2745 m, which were obtained with two different flying heading. A homogeneous road surface with asphalt pavement were used to estimate the parameters of the modified LiDAR equation.
    This study found that the flying heading may affect the recorded intensity and the estimation of the parameters, and this phenomenon is called “heading phenomenon”. We consider the heading phenomenon, spherical loss, atmospheric effect, topographic effect and non-lambertian characteristic when conducting the intensity correction.
    To evaluate the results of intensity correction in the forestry area, the ISODATA unsupervised classification was used. The classification of corrected intensity showed that although the forestry area did not fulfill the assumption of the LiDAR equation, which assumes the return signal is the ‘only return’, the results of the correction using first and only return are still acceptable. After all the intensity correction, the classification accuracy achieved a value of 83.32%.

    ABSTRACT I 摘要 II 誌謝 III Table of Contents IV List of Figures VI List of Tables IX Chapter 1. Introduction 1 1.1. Airborne laser scanning (ALS) 1 1.2. Forestry applications of intensity data 3 1.3. Review of intensity correction 4 Chapter 2. Theory 7 2.1. LiDAR equation 7 2.2. LiDAR equation with non-lambertian condition 9 2.3. Intensity correction 11 2.4. ISODATA classification 12 Chapter 3. Data 14 3.1. Study area 14 3.2. Data sets 14 3.2.1. The ALS data sets 14 3.2.2. The Digital Surface Model (DSM) 16 3.2.3. Orthophoto 16 3.3. Data preprocess 17 3.3.1. Range and angle of the incidence 17 3.3.2. Homogeneous dataset 17 Chapter 4. Results and discussions 22 4.1. Heading phenomenon 22 4.2. Parameters estimation 25 4.3. Intensity correction for the homogeneous road surface 27 4.4. Intensity correction for the whole area 31 4.4.1. The correction results for single strip 31 4.4.2. Comparison of multiple strips 34 4.5. Evaluation of intensity correction 36 Chapter 5. Conclusions 45 Reference 47

    Baltsavias, E. P. (1999). Airborne laser scanning: basic relations and formulas.ISPRS Journal of Photogrammetry and Remote Sensing, 54(2), 199-214.
    Briese, C., Höfle, B., Lehner, H., Wagner, W., Pfennigbauer, M., & Ullrich, A. (2008, April). Calibration of full-waveform airborne laser scanning data for object classification. In SPIE Defense and Security Symposium (pp. 69500H-69500H). International Society for Optics and Photonics.
    Biliouris, D., Van der Zande, D., Verstraeten, W. W., Stuckens, J., Muys, B., Dutré, P., & Coppin, P. (2009). RPV Model Parameters Based on Hyperspectral Bidirectional Reflectance Measurementsof Fagus sylvatica L. Leaves. Remote Sensing, 1(2), 92-106.
    Briese, C., Pfennigbauer, M., Lehner, H., Ullrich, A., Wagner, W., & Pfeifer, N. (2012). Radiometric calibration of multi-wavelength airborne laser scanning data. Proceedings of the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS Annals), Melbourne, Australia, 25, 335-340.
    Coren, F., & Sterzai, P. (2006). Radiometric correction in laser scanning.International Journal of Remote Sensing, 27(15), 3097-3104.
    Cheng K.S., Su Y.F., Yeh H.C., Chang J.H., Hung W.C. (2012). A path radiance estimation algorithm using reflectance measurements in radiometric control areas. International Journal of Remote Sensing, 33(5), 1543-1566.
    Gatziolis, D. (2011). Dynamic range-based intensity normalization for airborne, discrete return LiDAR data of forest canopies. Photogrammetric Engineering & Remote Sensing, 77(3), 251-259.
    Grace, A., & Branch, M. A. (1994). Optimization Toolbox. The MathWorks. Inc., Cochituate Place, Natick, MA. USA.
    Holmgren, J., & Persson, Å. (2004). Identifying species of individual trees using airborne laser scanner. Remote Sensing of Environment, 90(4), 415-423.
    Höfle, B., Pfeifer, N. (2007). Correction of laser scanning intensity data: Data and model-driven approaches. ISPRS Journal of Photogrammetry and Remote Sensing, 62(6), 415-433. doi: http://dx.doi.org/10.1016/j.isprsjprs.2007.05.008
    Jutzi, B., & Gross, H. (2009). Normalization of LiDAR intensity data based on range and surface incidence angle. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci, 38, 213-218.
    Kaasalainen, S., Pyysalo, U., Krooks, A., Vain, A., Kukko, A., Hyyppä, J., & Kaasalainen, M. (2011). Absolute radiometric calibration of ALS intensity data: Effects on accuracy and target classification. Sensors, 11(11), 10586-10602.
    Kim, I. I., McArthur, B., & Korevaar, E. (2001, February). Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications. In Proc. SPIE (Vol. 4214, pp. 26-37).
    Langford, J., Niemann, O., Frazer, G., Wulder, M., & Nelson, T. (2006). Exploring small footprint lidar intensity data in a forested environment. In 2006 IEEE International Symposium on Geoscience and Remote Sensing
    Lang, M. W., & McCarty, G. W. (2009). Lidar intensity for improved detection of inundation below the forest canopy. Wetlands, 29(4), 1166-1178.
    Lehner, H., & Briese, C. (2010). Radiometric calibration of full-waveform airborne laser scanning data based on natural surfaces (pp. 360-365). na.
    Lehner, H., Kager, H., Roncat, A., & Zlinszky, A. (2011). Consideration of laser pulse fluctuations and automatic gain control in radiometric calibration of airborne laser scanning data. Proceedings of 6th ISPRS Student Consortium and WG VI/5 Summer School.
    Luzum, B., Starek, M., & Slatton, K. C. (2004). Normalizing ALSM intensities.Geosensing Engineering and Mapping (GEM) Center Report No. Rep_2004-07-01. Civil and Coastal Engineering Department, University of Florida, 8pp.
    Meyers, J. P. (2002). Modeling polarimetric imaging using DIRSIG (Doctoral dissertation, Rochester Institute of Technology).
    Minnaert, M. (1941). The reciprocity principle in lunar photometry. Astrophysical Journal, 93, 403-410
    Ørka, H. O., Næsset, E., & Bollandsås, O. M. (2007). Utilizing airborne laser intensity for tree species classification. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(Part 3), W52.
    Rahman, H., Pinty, B., & Verstraete, M. M. (1993). Coupled surface-atmosphere reflectance (CSAR) model, 2, Semiempirical surface model usable with NOAA advanced very high resolution radiometer data. JOURNAL OF GEOPHYSICAL RESEARCH-ALL SERIES-, 98, 20-791.
    Shan, J., & Toth, C. K. (Eds.). (2008). Topographic laser ranging and scanning: principles and processing. CRC press, 195-212.
    Vain, A., Kaasalainen, S., Pyysalo, U., & andPaula Litkey, A. K. (2009). Use of Naturally Available Reference Targets to Calibrate Airborne Laser Scanning Intensity Data. Sensors, 9, 2780-2796.
    Vain, A., Yu, X., Kaasalainen, S., & Hyyppä, J. (2010). Correcting airborne laser scanning intensity data for automatic gain control effect. Geoscience and Remote Sensing Letters, IEEE, 7(3), 511-514.
    Vain, A., Kaasalainen, S..(2011). Correcting Airborne Laser Scanning Intensity Data, Laser Scanning,Theory and Applications, Prof. Chau-Chang Wang (Ed.), ISBN: 978-953-307-205-0, InTech, Available from:http://www.intechopen.com/books/laser-scanning-theory-and-applications/correcting-airborne-laser-scanning-intensity-data
    Wagner, W. (2010). Radiometric calibration of small-footprint full-waveform airborne laser scanner measurements: Basic physical concepts. ISPRS Journal of Photogrammetry and Remote Sensing, 65(6), 505-513.
    Wehr, A., & Lohr, U. (1999). Airborne laser scanning—an introduction and overview. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2), 68-82

    下載圖示 校內:2017-08-25公開
    校外:2017-08-25公開
    QR CODE