簡易檢索 / 詳目顯示

研究生: 陳宇昇
Chen, Yu-Sheng
論文名稱: 多孔性對電極應用於單一片式染料敏化太陽能電池之研究
Studies of Porous Counter Electrode for Monolithic Dye Sensitized Solar Cells
指導教授: 陳昭宇
Chen, Chao-Yu
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 85
中文關鍵詞: 多孔性對電極染料敏化太陽能電池鎳/金雙層金屬
外文關鍵詞: Porous counter electrode, Dye-sensitized solar cells, Ni/Au bilayer metal
相關次數: 點閱:71下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究重點在於單一片式之染料敏化太陽能電池,傳統型態之染敏太陽能電池是利用FTO導電玻璃基板當作對電極,此方法缺點為FTO導電玻璃成本昂貴且厚重。近年來,多孔性電極的研究於單一片式染料敏化太陽能電池逐漸受到重視,主要因為此結構將整個元件製成於同一FTO導電玻璃基板上,利用多孔性對電極取代傳統FTO對電極基板,可以大幅降低染敏電池之材料成本,此外單一片式元件未來可以實現於連續式製程以及應用於可撓式元件上。

    單一片式之染料敏化太陽能電池結構如下,FTO/ TiO2(cp)/ IPA-TiO2(mp)/ ZrO2/ NiOx/ Au/ Pt,本研究以熱蒸鍍鎳/金雙層金屬薄膜作為對電極,利用金薄膜於高溫退火時具有流動性高的特點來形成多孔性的網絡狀結構,此外鎳金屬因熱氧化形成一氧化鎳薄膜作為一電子阻障層,將此結構濺鍍白金Pt後,可當作一多孔性氧化鎳/金之p-type對電極,應用於AM 1.5G及室內光 (200 Lux) 之單一片式染料敏化太陽能電池。實驗中以不同退火溫度找出具多孔性且導電特性良好的參數作為元件的多孔性對電極,透過緻密層與各層金屬氧化物的調變,觀察其對元件的影響,最後製成單一片式元件與傳統三明治結構之電池進行探討與比較,在AM 1.5G照光強度下,其光電轉換效率分別可以達到6.31 %及7.15 %;在室內光200 Lux照光強度下,分別可以達到10.03 %及11.06 %的光電轉換效率。

    In this study, we deposite Ni/Au bilayer metal on the substrate and anneal in the ambient environment to create porous structure as a p-type counter electrode so that the dye and electrolyte can infiltrate from those porous counter electrode to the ZrO2/TiO2 layers for monolithic-dye sensitized solar cells (M-DSCs). The experimental process will present annealing temperature and time, find a suitable annealing condition to analysis influence of Ni/Au bilayer metal for the performance of M-DSCs. On the other wize, we will tune the thickness of metal-oxide materials (zirconium oxide and titanium oxide) to find the greatest parameters for the solar cells under AM 1.5G and dim-light condition (200 Lux). The device employing MK-2 dye and Co(II/III)-based electrolyte achieved a PCE of 6.31 % with Voc of 792.2 mV, Jsc of 10.8 mA/cm2 and FF of 0.74 under 1-sun condition, and the device achieved a PCE of 10.03 % with Voc of 574 mV, Jsc of 16.8 μA/cm2 and FF of 0.68 under dim-light condition (200 Lux).

    摘要 I 目錄 XV 表目錄 XIX 圖目錄 XX 第一章 緒論 1 1-1 太陽能電池之歷史與發展 1 1-2 太陽能電池種類 2 1-2-1 矽晶太陽能電池 2 1-2-2 薄膜太陽能電池 2 1-2-3 有機太陽能電池 2 1-3 太陽能電池量測原理 4 1-3-1 太陽能光譜 4 1-3-2太陽能電池之電壓電流I-V特性曲線及等效電路 5 1-3-3 太陽能電池之量子轉換效率 7 1-4 研究動機與目的 9 1-4-1 染料敏化太陽能電池之概況 9 1-4-2低成本之單一片式染敏電池 9 1-4-3 不同電解液的影響 11 1-4-4弱光下 (Dim-light, 200 Lux) 的比較與應用 12 1-4-5 研究目的 14 第二章 文獻回顧 15 2-1有機太陽能電池之發展 15 2-1-1 染料敏化太陽能電池之發展 15 2-2背接觸式與單一片式染料敏化太陽能電池之發展 22 2-2-1背接觸式染料敏化太陽能電池 22 2-2-2單一片式染料敏化太陽能電池 25 第三章 元件製備及實驗儀器原理 34 3-1 實驗儀器與藥品 34 3-1-1 實驗儀器 34 3-1-2 實驗藥品 35 3-2 元件結構 36 3-3元件製程 36 3-4 實驗流程 37 3-4-1 元件基板製備 37 3-4-2 工作電極製備 37 3-4-3 對電極製備 37 3-4-4 多孔絕緣層製備 38 3-4-5 鎳金多孔性對電極製備 38 3-4-6 染料分子之吸附 38 3-4-7 元件之封裝 39 3-4-8 MK-2 染料配置 39 3-4-9 Cobalt電解液配置 40 3-4-10 Pt溶液配置 40 3-5實驗儀器工作原理 41 3-5-1 高真空蒸鍍系統 41 3-6 量測與分析儀器工作原理 42 3-6-1 高解析場發射掃描式電子顯微鏡 (SEM) 42 3-6-2 X-ray繞射分析儀 (XRD) 42 3-6-3 表面粗糙儀 (Alpha-step) 43 3-6-4 吸收光譜儀 (Ultraviolet-visible spectrophotometer, UV-Vis) 43 3-6-5 四點探針 (Four-point probe) 44 3-6-6 I-V特性曲線量測 45 3-6-7 IPCE量測 46 3-6-8 暫態光電壓/光電流量測 (Transient) 48 3-6-9 電化學交流阻抗分析儀 (Electrochemical impedance spectroscopy, EIS) 48 3-6-9-1不同偏壓下的等效電路圖 50 第四章 結果與討論 54 4-1 不同溫度退火之對電極分析 54 4-2氧化鎳薄膜分析 56 4-3多孔氧化鎳/金薄膜導電特性分析 58 4-4對電極催化特性分析 59 4-5染料吸收與太陽光譜分析 60 4-6金屬氧化物厚度對於元件的影響 61 4-7前處理對於元件之影響 68 4-8 Mask效應對於元件之影響 69 4-9單一片式染敏電池於室內光之應用 71 4-10單一片式染敏電池於銅電解液系統之應用 75 第五章 結論與未來發展 78 第六章 參考文獻 79

    [1]Edmond Becquerel, Comptes Rendus, 9, 561-567, 1839
    [2]D. M. Chapin, C. S. Fuller and G. L. Pearson, Journal of Applied Physics, 25, 676, 1954
    [3]D. E. Carlson, C. R. Wronski, Applied Physics Letters, 28, 671, 1976
    [4]Andrew W. Blakers, Aihua Wang, Adele M. Milne, Jianhua Zhao, Martin A. Green, Applied Physics Letters, 55, 1363, 1989
    [5]P. Verlinden, W. Deng, X. Zhang, Y. Yang, J. Xu, Y. Shu, P. Quan, J. Sheng, S. Zhang, J. Bao, F. Ping, Y. Zhang, Z. Feng, ”Strategy, Development and Mass Production of High Efficiency Crystalline Si PV Modules,” Proceedings of the 6th World Conference on PV Energy Conversion, Paper 4sMoO.1.4, 2014
    [6]Martin A. Green, Keith Emery, Yoshihiro Hishikawa, Wilhelm Warta, and Ewan D.
    Dunlop, Prog. Photovolt: Res. Appl., 24(1), 3–11, 2016
    [7]B.M. Kayes, H. Nie, R. Twist, S. G. Spruytte, F. Reinhardt, I. C. Kizilyalli, and G. S. Higashi, "27.6% Conversion Efficiency, A New Record for Single-Junction Solar Cells Under 1-Sun Illumination," Proceedings of the 37th IEEE Photovoltaic Specialists Conference, no. 11, 2011
    [8]Osborne M. Hanergy’s Solibro has 20.5% CIGS solar cell verified by NREL, 8 April 2014
    [9]P.T. Chiu, D.L. Law, R.L. Woo, S. Singer, W.D. Hong, A. Zakaria, J.C. Boisvert, S. Mesropian, R.R. King, N.H. Karam, "Continued progress on direct bonded 5J space and terrestrial cells,” Proceedings of the 40th IEEE Photovoltaic Specialists Conference, 2014
    [10]O’regan, B., & Grfitzeli, M. A low-cost, high-efficiency solar cell based on dye-sensitized. nature, 353(6346), 737-740, 1991
    [11]Grätzel, M. Photoelectrochemical cells. Nature, 414(6861), 338-344, 2001
    [12]Ito, S., Murakami, T. N., Comte, P., Liska, P., Grätzel, C., Nazeeruddin, M. K., & Grätzel, M. Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin solid films, 516(14), 4613-4619, 2008
    [13]Kakiage, K., Aoyama, Y., Yano, T., Otsuka, T., Kyomen, T., Unno, M., & Hanaya, M. An achievement of over 12 percent efficiency in an organic dye-sensitized solar cell. Chemical Communications, 50(48), 6379-6381, 2014
    [14]Kakiage, K., Aoyama, Y., Yano, T., Oya, K., Fujisawa, J. I., & Hanaya, M. Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chemical communications, 51(88), 15894-15897, 2015
    [15]Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131(17), 6050-6051, 2009
    [16]National Renewable Energy Laboratory, NREL, 2017
    [17]M. Pagliaro, G. Palmisano, and R. Ciriminna, Flexible Solar Cells, John Wiley & Sons, New York, 2008
    [18]Reference Solar Spectral Irradiance: Air Mass 1.5, American Society for Testing and Materials (ASTM) Terrestrial Reference Spectra for BR Photovoltaic Performance Evaluation
    [19]Joseph A. Carson, Solar Cell Research Progress, Nova Science Publishers, 23-39, 2008
    [20]Zhang, S., Yang, X., Numata, Y., & Han, L. Highly efficient dye-sensitized solar cells: progress and future challenges. Energy & Environmental Science, 6(5), 1443-1464, 2013
    [21]Luque, Antonio, and Steven Hegedus, eds. Handbook of photovoltaic science and engineering. John Wiley & Sons, 2011
    [22]Greg P. Smestad, Optoelectronics of Solar Cells, SPIE Publications, 37-44, 2002
    [23]Zhao, H., Liu, G., Zhang, J., Arif, R. A., & Tansu, N. Analysis of internal quantum efficiency and current injection efficiency in III-nitride light-emitting diodes. Journal of Display Technology, 9(4), 212-225, 2013
    [24]TAO, Yuguo. Screen‐Printed Front Junction n‐Type Silicon Solar Cells, 2016
    [25]Hashmi, Ghufran, et al. Review of materials and manufacturing options for large area flexible dye solar cells. Renewable and Sustainable Energy Reviews 15.8, 3717-3732, 2011
    [26]Fakharuddin, Azhar, et al. A perspective on the production of dye-sensitized solar modules. Energy & Environmental Science 7.12, 3952-3981, 2014.
    [27]Murakami, T. N., & Grätzel, M. Counter electrodes for DSC: application of functional materials as catalysts. Inorganica Chimica Acta, 361(3), 572-580, 2008
    [28]Yun, S., Liu, Y., Zhang, T., & Ahmad, S. Recent advances in alternative counter electrode materials for Co-mediated dye-sensitized solar cells. Nanoscale, 7(28), 11877-11893, 2015
    [29]Fakharuddin, A., Jose, R., Brown, T. M., Fabregat-Santiago, F., & Bisquert, J. A perspective on the production of dye-sensitized solar modules. Energy & Environmental Science, 7(12), 3952-3981, 2014
    [30]Saygili, Y., Söderberg, M., Pellet, N., Giordano, F., Cao, Y., Muñoz-García, A. B., ... & Kavan, L. Copper Bipyridyl Redox Mediators for Dye-Sensitized Solar Cells with High Photovoltage. Journal of the American Chemical Society, 138(45), 15087-15096, 2016
    [31]Lan, J. L., Wei, T. C., Feng, S. P., Wan, C. C., & Cao, G. Effects of iodine content in the electrolyte on the charge transfer and power conversion efficiency of dye-sensitized solar cells under low light intensities. The Journal of Physical Chemistry C, 116(49), 25727-25733, 2012
    [32]De Rossi, F., Pontecorvo, T., & Brown, T. M. Characterization of photovoltaic devices for indoor light harvesting and customization of flexible dye solar cells to deliver superior efficiency under artificial lighting. Applied Energy, 156, 413-422, 2015
    [33]Bai, Yu, et al. "High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts." Nature materials 7.8, 626-630, 2008.
    [34]Chen, Chia‐Yuan, et al. A Ruthenium Complex with Superhigh Light‐Harvesting Capacity for Dye‐Sensitized Solar Cells. Angewandte Chemie 118.35, 5954-5957, 2006
    [35]Arsenault, Eric. Three-Dimensional Transparent Conducting Oxide Based Dye Sensitized Solar Cells. Diss. University of Toronto, 2011
    [36]Yella, Aswani, et al. Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. science 334.6056, 629-634, 2011
    [37]Grätzel, Michael. Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 4.2, 145-153, 2003
    [38]Chiba, Yasuo, et al. Dye-sensitized solar cells with conversion efficiency of 11.1%. Japanese Journal of Applied Physics 45.7L, L638, 2006
    [39]Xiang, Wanchun, et al. Stable high efficiency dye-sensitized solar cells based on a cobalt polymer gel electrolyte. Chemical Communications 49.79, 8997-8999, 2013
    [40]Saygili, Yasemin, et al. Copper Bipyridyl Redox Mediators for Dye-Sensitized Solar Cells with High Photovoltage. Journal of the American Chemical Society 138.45, 15087-15096, 2016
    [41]Freitag, Marina, et al. Dye-sensitized solar cells for efficient power generation under ambient lighting. Nature Photonics, 2017
    [42]Kim, Hui-Seon, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific reports 2, 591,2012
    [43]Burschka Julian, Pellet Norman, Moon Soo-Jin, Humphry-Baker Robin, Gao Peng, Nazeeruddin Mohammad K., Grätzel Michael, Nature, 499, 316-319, 2013
    [44]Saliba, Michael, et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354.6309, 206-209, 2016
    [45]Swanson, Richard M., et al. Point-contact silicon solar cells. IEEE Transactions on Electron Devices 31.5, 661-664, 1984
    [46]Kroon, J. M., et al. Nanocrystalline dye‐sensitized solar cells having maximum performance. Progress in Photovoltaics: Research and Applications 15.1, 1-18, 2007
    [47]Kashiwa, Yohei, Yorikazu Yoshida, and Shuzi Hayase. All-metal-electrode-type dye sensitized solar cells (transparent conductive oxide-less dye sensitized solar cell) consisting of thick and porous Ti electrode with straight pores. Applied Physics Letters 92.3, 24, 2008
    [48]Fuke, Nobuhiro, et al. Influence of TiCl 4 treatment on back contact dye-sensitized solar cells sensitized with black dye. Energy & Environmental Science 2.11, 1205-1209, 2009
    [49]Fu, Dongchuan, et al. Dye‐Sensitized Back‐Contact Solar Cells. Advanced Materials 22.38, 4270-4274, 2010
    [50]Yoo, Beomjin, et al. Titanium nitride thin film as a novel charge collector in TCO-less dye-sensitized solar cell. Journal of Materials Chemistry 21.9, 3077-3084, 2011
    [51]Tjitra Salim, Noviana, et al. Unexpected effect of dye's molar extinction coefficient on performance of back contact dye-sensitized solar cells. Applied Physics Letters 101.23, 233905, 2012
    [52]Kay, Andreas, and Michael Grätzel. Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Solar Energy Materials and Solar Cells 44.1, 99-117, 1996
    [53]Bach, Udo, et al. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395.6702, 583-585, 1998
    [54]Krüger, Jessica, et al. High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination. Applied Physics Letters 79.13, 2085-2087, 2001
    [55]Schmidt‐Mende, Lukas, et al. Organic Dye for Highly Efficient Solid‐State Dye‐Sensitized Solar Cells. Advanced Materials 17.7, 813-815, 2005
    [56]Han, Hongwei, et al. A design for monolithic all-solid-state dye-sensitized solar cells with a platinized carbon counterelectrode. Applied Physics Letters 94.10, 103102, 2009
    [57]Skupien, Krzysztof, et al. Catalytic materials manufactured by the polyol process for monolithic dye‐sensitized solar cells. Progress in Photovoltaics: Research and Applications 17.1, 67-73, 2009
    [58]Pettersson, Henrik, et al. Parallel‐connected monolithic dye‐sensitised solar modules. Progress in Photovoltaics: Research and Applications 18.5, 340-345, 2010
    [59]Liu, Guanghui, et al. A mesoscopic platinized graphite/carbon black counter electrode for a highly efficient monolithic dye-sensitized solar cell. Electrochimica Acta 69, 334-339, 2012
    [60]Ito, Seigo, and Kaoru Takahashi. Fabrication of monolithic dye-sensitized solar cell using ionic liquid electrolyte. International Journal of Photoenergy, 2012
    [61]Hinsch, A., et al. Material development for dye solar modules: results from an integrated approach. Progress in Photovoltaics: Research and Applications 16.6, 489-501, 2008
    [62]Fu, Dongchuan, Patrick Lay, and Udo Bach. TCO-free flexible monolithic back-contact dye-sensitized solar cells. Energy & Environmental Science 6.3, 824-829, 2013
    [63]Kwon, Jeong, et al. Highly efficient monolithic dye-sensitized solar cells. ACS applied materials & interfaces 5.6, 2070-2074, 2013
    [64]Shen, P. S., Li, M. H., Yang, Y. S., Juang, S. S. Y., Lin, C. W., Yin, T. Y., & Chen, P. A novel porous Ti/TiN/Ti thin film as a working electrode for back-contact, monolithic and non-TCO dye-sensitized solar cells. Sustainable Energy & Fuels, 1(4), 851-858, 2017
    [65]Ahmadi, S., Asim, N., Alghoul, M. A., Hammadi, F. Y., Saeedfar, K., Ludin, N. A. & Sopian, K. The role of physical techniques on the preparation of photoanodes for dye sensitized solar cells. International Journal of Photoenergy, 2014
    [66]Widjonarko, N. E. Introduction to Advanced X-ray Diffraction Techniques for Polymeric Thin Films. Coatings, 6(4), 54, 2016
    [67]Tabrizi, S., Cao, Y., Lin, H. et al. Sci. China Phys. Mech. Astron 60, 034201, 2017
    [68]Al-Alwani, Mahmoud AM, et al. Dye-sensitised solar cells: Development, structure, operation principles, electron kinetics, characterisation, synthesis materials and natural photosensitisers. Renewable and Sustainable Energy Reviews 65, 183-213, 2016
    [69]Xue, Guogang, et al. Understanding of the chopping frequency effect on IPCE measurements for dye-sensitized solar cells: from the viewpoint of electron transport and extinction spectrum. Journal of Physics D: Applied Physics 45.42, 425104, 2012
    [70]K. K. N. Simon M. Sze, Physics of Semiconductor Devices. Hoboken, 2007
    [71]Wang, Qing, Jacques-E. Moser, and Michael Grätzel. Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. The Journal of Physical Chemistry B 109.31, 14945-14953, 2005
    [72]Bisquert, Juan. Theory of the impedance of electron diffusion and recombination in a thin layer. The Journal of Physical Chemistry B 106.2, 325-333, 2002
    [73]Fabregat-Santiago, Francisco, et al. Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy. Solar Energy Materials and Solar Cells 87.1, 117-131, 2005
    [74]Fabregat-Santiago, Francisco, et al. Correlation between photovoltaic performance and impedance spectroscopy of dye-sensitized solar cells based on ionic liquids. The Journal of Physical Chemistry C 111.17, 6550-6560, 2007
    [75]Hagfeldt, Anders, and Michael Graetzel. Light-induced redox reactions in nanocrystalline systems. Chemical Reviews 95.1, 49-68, 1995
    [76]Bisquert, J., & Fabregat-Santiago, F. Impedance spectroscopy: a general introduction and application to dye-sensitized solar cells, 2010
    [77]Ito, Seigo, et al. Photovoltaic characterization of dye‐sensitized solar cells: effect of device masking on conversion efficiency. Progress in photovoltaics: research and applications 14.7, 589-601, 2006
    [78]Liu, I-Ping, et al. Highly electrocatalytic counter electrodes based on carbon black for cobalt (iii)/(ii)-mediated dye-sensitized solar cells. Journal of Materials Chemistry A 5.1, 240-249, 2017

    無法下載圖示 校內:2022-08-22公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE