簡易檢索 / 詳目顯示

研究生: 陳滄欽
Chen, Tsang-Chin
論文名稱: 澱粉黃酸鹽程序捕集及熱處理回收重金屬之研究
Recovery of heavy metal by insoluble starch xanthate and thermal treatment processes
指導教授: 張祖恩
Chang, Juu-En
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 111
中文關鍵詞: 熱處理去除不溶性澱粉黃酸鹽回收
外文關鍵詞: Removal, Insoluble starch xanthate, Recovery, Thermal treatment
相關次數: 點閱:129下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究自行合成不溶性澱粉黃酸鹽(Insoluble Starch Xanthate, ISX),並使用黃酸鹽程序處理溶液中之銅離子,探討最適硫/銅比條件,並依最適添加配比進行不同操作條件(反應時間、pH值、ORP、添加氯鹽及硫酸鹽)下,ISX對銅離子去除效率之影響。此外,探討混合重金屬溶液之去除效率,並以ISX處理實廠廢水印證重金屬去除效率及操作條件。最後,以熱處理回收黃酸鹽程序所捕集之重金屬,並將不同溫度下之生成物以元素分析、X光繞射儀(XRD)及FTIR分析,期能了解熱反應行為並找尋最適回收溫度。

      金屬離子去除實驗結果顯示,在硫/銅比1.8~2.5、pH=3~6、ORP值200~500mV條件下,ISX可有效將中高濃度500mg/L銅溶液去除達放流水法規標準。而低pH值及還原環境會降低ISX去除銅離子效率,硫酸鹽及氯鹽濃度於5%以下時並不影響。於金屬混合溶液中,ISX具選擇性去除重金屬,可用以分離回收重金屬。熱處理實驗結果顯示,Cu-ISX和Zn-ISX錯合物經熱處理後會形成CuO及ZnO等金屬氧化物具回收價值,且Zn只須640℃,Cu須780℃。Pb-ISX錯合物則無法形成單純PbO,即使高達1050℃仍以PbSO4.4PbO和α- Pb3O2SO4,須借重其他回收處理程序純化。由上述結果可知,ISX具有選擇性捕集廢水中重金屬之特性,配合熱處理回收處理,可達資源循環利用目標,而有別於傳統化學混凝沉澱續以固化/穩定化處理過程。

     In this study, the optimum operating condition for the removal of Cu(Ⅱ) by insoluble starch xanthate (ISX) and further recovery of metals by thermal treatment were investigated. The operating condition such as sulfur/copper molar ratio, reaction time, pH, ORP, chloride and sulfate concentration for copper removal were also investigated by batch experiments. Recovery of heavy metals from metal-ISX complexes by thermal treatment was performed under different temperatures. The effect of thermal treatments were evaluated by elemental analysis (EA), X-ray powder diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis.

     Results from batch metal removal experiments showed that the removal of copper ion was optimized with sulfur/copper molar ratio between 1.8 and 2.5, pH between 3 and 6, and ORP between 200mV and 500mV. No significant effect on copper removal efficiency was observed with chloride and sulfate concentrations below 5%. Copper ion could even be selectively removal from aqueous multi-heavy metal solutions and electroplating wastewater by ISX under the optimum operating conditions.

     The behaviors of metal-ISX complexes under thermal treatments were not quite the same between different complexes. Cu-ISX and Zn-ISX complexes would be oxidized and transformed to CuO and ZnO under 780℃and 640℃. Nevertheless, the sulfur content in Pb-ISX complexes would not be fully removed even with 1050℃ thermal treatment. The major crystalline phase identified are PbSO4.4PbO and α- Pb3O2SO4 instead of PbO.

     From the above results, it was concluded that ISX is capable of selective removal of copper from wastewater. Furthermore, metals could be recovered from metal-ISX complexes by thermal treatments. ISX process combined with thermal treatment could be a comprehensive solution for both heavy metals-containing wastewater treatment and subsequent sludge disposal requirements.

    第一章 前言                     1 1-1 研究動機與目的                 1 1-2 研究內容                    2 第二章 文獻回顧                   3 2-1 含重金屬廢水之處理處置             3 2-2 Xanthate之基本特性               4 2-2-1 Xanthate的反應特性              4 2-2-2 Xanthate的有機特性              9 2-2-3 Metal-Xanthate的生成物特性          10 2-3 Xanthate的應用                 14 2-3-1 礦物浮選之應用                14 2-3-2 去除廢水中重金屬之應用            19 2-3-3 重金屬穩定化                 21 2-4 Metal-Xanthate complexes中金屬離子溶出及回收  23 2-4-1 化學處理法                  24 2-4-2 熱處理法                   25 2-5 小結 27 第三章 實驗設備、材料與方法             28 3-1 研究架構及實驗流程               28 3-2 實驗設備及材料                 30 3-2-1 實驗設備                   30 3-2-2 實驗材料                   31 3-3 實驗方法                    32 3-3-1 Insoluble Starch Xanthate 之合成       32 3-3-2 ISX 吸附去除重金屬離子            33 3-3-3 熱處理回收                  36 3-3-4 液相組成分析                 37 3-3-5 固相特性分析                 38 第四章 結果與討論                  43 4-1 黃酸鹽之特性                  43 4-1-1 ISX之元素組成近似分析結果           43 4-1-2 ISX之XRD晶相繞射分析結果           43 4-1-3 ISX之FTIR 官能基鍵結分析結果         44 4-1-4 ISX之SEM微化學分析結果            44 4-1-5 小結                     49 4-2 ISX 去除重金屬離子效率及影響因子探討      50 4-2-1 最適硫 /銅比條件               50 4-2-2 反應時間需求                 56 4-2-3 pH值對去除銅離子效果之影響          56 4-2-4 氧化還原環境對ISX 去除銅離子之影響      59 4-2-5 陰離子對ISX 去除銅離子之影響         59 4-2-6 ISX 去除混合重金屬溶液效能之探討       59 4-2-7 ISX 處理實廠廢水之效率及操作條件印證     62 4-2-8 小結                     67 4-3 熱處理回收重金屬黃酸鹽之探討          68 4-3-1 Cu-ISX complexes熱處理之探討         68 4-3-2 Pb-ISX complexes熱處理之探討         80 4-3-3 Zn-ISX complexes熱處理之探討         70 4-3-4 小結                     92 第五章 結論與建議                  104 5-1 結論                      104 5-2 建議                      105 參考文獻                       106

    Bailey, S.E., Olin, T.J., Bricka, R.M. and Adrian, D.D., 1999. A review of potentially low-cost sorbents for heavy metals. Water Research, 33(11), pp. 2469-2479 .
    Bose, P., Bose, M.A. and Kumar, S., 2002. Critical evaluation of treatment strategies involving adsorption and chelation for wastewater containing copper, zinc and cyanide. Advances in Environmental Research, 7(1), pp. 179-195.
    Breviglieri, S.T., Cavalheiro, É.T.G., and Chierice G.O., 2000. Correlation between ionic radius and thermal decomposition of Fe(II), Co(II), Ni(II), Cu(II) and Zn(II) diethanoldithiocarbamates. Thermochimica Acta, 356(1-2), pp.79-84.
    Bricka, R.M. and Hill, D.O., 1989. Metal immobilization by solidification of hydroxide and xanthate sludges. Environmental aspects of stabilization and solidification of hazardous and radioactive wastes, pp. 257-272. American society for testing and materials, Philadelphia.
    Campanella, L., Cardarelli, E., Ferri, T. and Petronio, B.M., 1986. Mercury removal from petrochemical wastes. Water Research, 20(1), pp.63-65.
    Cavell, K.J., Sceney, C.G., Hill, J.O. and Magee, R.J., 1973. Thermal studies on nickel alkyl xanthate complexes. Thermochimica Acta, 5(3), pp.319-328.
    Chang, Y.K., Chang, J.E., Lin T.T. and Hsu,Y.M., 2002. Integrated copper-containing wastewater treatment using xanthate process. Journal of Hazardous Materials, 94(1), pp. 89-99.
    Chaudhari, S.and Tare, V., 1999. Heavy metal-soluble starch xanthate interactions in aqueous environments. Journal of Applied Polymer Science, 71(8), pp.1325-1332.
    de Donato, P., Cases, J.M., Kongolo, M., Cartier, A. and Rivail, J.L., 1989. Stability of the amylxanthate ion as a function of pH: modeling and comparison with the ethylxanthate ion. International Journal of Mineral Processing, 25, pp.1-16.
    Dunn, G., Ginting, A.R. and O’Connor, B., 1994. Thermoanalytical study of the oxidation of chalcocite. Journal of thermal analysis, 41, pp.671-686.
    Franck, D., Crini, G., Bertini, S., Crini, N.M., Badot, P.M., Vebrel, J. and Torri, G., 2004. Characterization of crosslinked starch materials with spectroscopic techniques. Journal of Applied Polymer Science, 93(6), pp.2650-2663.
    Iwasaki, I and Cook, S.R.B., 1958. The decomposition of xanthate in acid solution. Journal of the American Chemical Society, 80, pp. 285-288.
    Jawed,M. and Tare,V., 1991. Application of starch xanthates for cadmium removal:a comparative evaluation. Journal of Applied Polymer Science, 42(2), pp.317-324.
    Jones, M.H. and Woodcock, J.T., 1973. Ultraviolet spectrometry of flotation reagents with special reference to the determination of xanthate in flotation liquors. The institution of mining and metallurgy.
    Khwaja, M.A., Cardwell, T.J. and Magee, R.J., 1973. Thermal studies on arsenic, antimony and bismuth alkayxanthate complexes. Analytica chimica Acta, 64, pp.9-17.
    Kumar, A., Rao, N.N. and Kaul, S.N., 2000. Alkali-treated straw and insoluble straw xanthate as low cost adsorbents for heavy metal removal - preparation, characterization and application. Bioresource Technology, 71(2), pp. 133-142.
    Leja, J., 1982. Surface chemistry of froth flotation. Plenum Press, New York, New York.
    Leppinen, J.O., 1990. FTIR and flotation investigation of the adsorption of ethyl xanthate on activated and non-activated sulfide minerals. International Journal of Mineral Processing, 30(3-4), pp.245-263.
    Lokesh, K.S. and Tare, V., 1989. Cadmium Starch-Xanthate interaction in aqueous system under varied environmental conditions. Indian Journal of Environmental Health, 31(2), pp.141-155.
    Lopez-Valdivieso, A., Ojeda Escamilla, C., Song, S., Lazaro Baez, I. and Gonzalez Martinez, I., 2003. Adsorption of isopropyl xanthate ions onto arsenopyrite and its effect on flotation. International Journal of Mineral Processing, 69(1-4), pp.175-184.
    Macchi. G., Marani. D., Majone, M. and Corctti, M.R., 1985. Optimization of mercury removal from chloralkali industrial wastewater by starch xanthate. Environmental technology letters, 6, pp.369-380.
    Mielczarski, J.A. and Yoon, R.H., 1989. Fourier transform infrared external reflection study of molecular orientation in spontaneously adsorbed layers on low-absorption substrates. Journal of Physical Chemistry, 93(5), pp.2034-2038.
    Nanjo, M. and Yamasaki, T., 1969. Acid decomposition of metal xanthate complexes and their stability. Bulletin of the chemical society of Japan, 42, pp. 972-976.
    Natu, G.N., Kulkarni S.B.and Dhar, P.S., 1982. Thermal decomposition studies on ethylxanthato complexes of iron and nickel. Thermochimica Acta, 52(1-3), pp.31-39.
    Pandey, O. P.,1988. Chemistry and mechanism of thermal degradation reactions of zirconium(IV) alkyl xanthate complexes. Thermochimica Acta, 127, pp.193-199.
    Patterson, J.W., “Effect of carbonate ion on precipitation treatment of cadmium, copper, lead and zinc,” Proceeding 36th Annual Industrial Waste Conference, 1981, Purdue University, pp. 579-602, Purdue University, West Lafayette, Indiana, USA.
    Poling, G. W. and Leja, J.,1963. Infrared study of xanthate adsorption on vacuum deposited films of lead sulfide and metallic copper under conditions of controlled oxidation. Journal of Physical Chemistry, 67(10), pp.2121-2126.
    Pomianowski, A. and Leja, J., 1963. Spectrophotometric study of xanthate and dixanthogen solution . Canadian Journal of Chemistry, 41, pp. 2219-2230.
    Rao, S.R., 1971. Xanthate and related compounds. Marcel Dekker, New York, New York.
    Schaum, K., Ziedler, P. and Wagner, E., 1933. Hydrolysis and dissociation of xanthates. Kolloid-Zeitschrift, 65, pp. 264.
    Socrates. G., 2001. Infrared and Raman characteristic group frequencies /tables and charts, 3rd. John Wiley & Sons, Ltd. New York.
    Sparrow, G., Pomianowski, A. and Leja, J., 1977. Soluble copper xanthate complexes. Separation science, 12(1), pp. 87-102.
    Stalidis, G.A., Matis, K.A. and Lazaridis, N.K., 1989. Selective separation of Cu, Zn, and As from solution by flotation techniques. Separation Science and Technology, 24(1-2), pp. 97-109.
    Sun, Z. and Forsling, W. 1997. Degradation kinetics of ethyl- xanthate as a function of pH in aqueous solution. Minerals Engineering, 10(4), pp. 389-400.
    Tare, V., Chaudhari, S. and Jawed, M., 1992. Comparative evaluation of soluble and insoluble xanthate process for heavy metal removal from wastewaters. Water Science and Technology 26(1-2), pp.237-246.
    Tipman, R.N. and Leja J., 1975. Reactivity of xanthate and dixanthogen in aqueous solutions of different pH. Colloid and polymer science, 253, pp. 4-10.
    Tiravanti, G., Marani, D., Passino, R. and Santori, M., 1989. Removal of heavy metals from wastewaters by cellulose xanthate chelating exchangers. Environment protection engineering, 15(1-2), pp. 25-33.
    Trettenhahn, G.L.J., Nauer, G.E. and Neckel, A., 1993. Vibrational spectroscopy on the PbO-PbSO4 system and some related compounds. Part 1-Fundamentals, infrared and Raman spectroscopy. Vibrational spectroscopy, 5, pp.85-100.
    Wing, R.E., 1978. Dissolved heavy-metal removal by insoluble starch xanthate (ISX). Environmental progress, 2(4), pp269-272.
    Wing, R.E., 1978. Treating plating waste with ISX. Industrial finishing, 54(10), pp.38-40.
    Wing, R.E. and Rayford, W.E., 1977. Heavy metal removal processes for plating rinse waters. Proceedings of the 32nd industrial waste conference, pp. 838-852, Purdue university, Lafayette, Indiana.
    Wing, R.E., Doane, W.M., Russel, C.R., 1975. Insoluble starch xanthate: Use in heavy metal removal. Journal of Applied Polymer Science 19(3), 847-854.
    Wing, R.E., Jasberg, B. K. and Navickis, L. L., 1978. Insoluble starch xanthate : Preparation, stabilization scale-up and use. Starch. Starke, 30(5), pp.163-170.
    Winter. G., 1980. Inorganic xanthates. Reviews in inorganic chemistry, 2, pp.253-342.
    行政院經濟部工業局,2002。電鍍業資源化應用技術手冊。
    行政院經濟部工業局,1996。電鍍業廢棄物資源化案例彙編。
    呂明和,「電解泡沫浮除重金屬反應機制之研究」,國立成功大學環境工程研究所博士論文,台灣台南,1994。
    林建志,「酸萃取及黃酸鹽富集回收焚化反應灰中重金屬之研究」,國立成功大學環境工程研究所碩士論文,台灣台南,2003。
    張益國,「黃酸鹽程序去除銅離子及其生成物之穩定性」,國立成功大學環境工程研究所博士論文,台灣台南,2003。
    陳燕雪,「正丁基黃酸鹽穩定化銅、鎳及鋅氫氧化物污泥之研究」,國立成功大學環境工程研究所碩士論文,台灣台南,1999。
    黃志傑,「正丁基黃酸鹽穩定銅、鋅離子之研究」,國立成功大學環境工程研究所碩士論文,台灣台南,2000。
    黃建宜,「銅與界面活性劑錯合物長期穩定性之研究」,國立成功大學環境工程研究所碩士論文,台灣台南,1995。
    歐慧琪,「不溶性澱粉黃酸鹽螯合銅之溶出及電解回收研究」,碩國立成功大學環境工程研究所碩士論文,台灣台南,2002。

    下載圖示 校內:立即公開
    校外:2005-07-07公開
    QR CODE