簡易檢索 / 詳目顯示

研究生: 關智光
Kuan, Chih-Kuang
論文名稱: 先導型100 mN過氧化氫微推進器之自主研發
Indigenous Technology Development of an Advanced 100mN HTP Monopropellant Microthruster
指導教授: 趙怡欽
Chao, Y. C.
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 72
中文關鍵詞: 微推進器過氧化氫觸媒
外文關鍵詞: Hydrogen Peroxide, Microthruster, Catalyst
相關次數: 點閱:120下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文研究強調實作創新,為國內首次自主研發微衛星用過氧化氫微推進器,並自行開發確實掌握自過氧化氫推進燃料、分解觸媒以至於微推進器設計與測試等相關關鍵材料與技術,完全自製完成一示範原型100 mN 過氧化氫微推進系統,經測試符合設計目標與需求。
      目前衛星微型化雖然有助於降低成本與風險,相對的需要更精準的微推力姿態控制系統(Attitude Control System),這方面的研究在過去相對的很缺乏。過氧化氫具有適當的比衝值且燃料取得成本低,對環境衝擊小的優點。本研究針對50kg級微型太空飛行器的姿態控制需求,使用自行開發的濃度92% 的高性能過氧化氫(High-Test Peroxide, HTP)微推進劑設計單推進劑(Monopropellant)微推進器,目標推力等級約100 mN。
      本研究針對過氧化氫分解觸媒選擇與製備以及銀觸媒床系統因尺寸縮小造成的性能減退與工程技術難度,包括因相對熱損提高造成分解溫度比絕熱分解溫度低而液氣兩相造成觸媒分解效率下降,噴嘴的尺寸與邊界層,微推力測試設備等問題,以各種特殊工程技術與設計加以克服以符合目標需求。
      設計過程藉由理論分析與初步實驗,獲得過氧化氫微推進器適合的操作參數,配合地面測試得到相關性能參數,建立設計點參數與性能估算以及設計程序。設計微推進器原型內填充銀觸媒0.7g,整體體積0.9cm3,重量5.8g。實驗結果發現使用91.5% 過氧化氫流量0.18 g/s,其分解效率超過80%,分解溫度最高可達約890 K,觸媒床壓力5.86 bar。地面測試量測推力得182 mN,比衝值103 s,推估在真空中比衝值可達150 s以上,符合設計目標與需求。

     In this study, indigenous technology development of an advanced HTP (High-Test Hydrogen Peroxide) microthruster system for micro-spacecrafts is presented. For the first time in this country, the key materials, components and techniques of a HTP thruster system, including the HTP monopropellant, decomposing catalysts, and system and component design and test techniques, are completely and indigenously developed. A demonstrating prototype of a 100 mN HTP microthruster system is designed, manufactured and tested, and the test results show that the performance of the microthruster can meet the design goal and mission requirements.
     For maneuvering the attitude of a micro-satellite, a compatible thruster system demands higher energy density (specific impulse) and higher precision (the resolution of impulse bit) as the size is miniaturized. As an acceptable performance, with its environmentally friendly characteristics, HTP is generally regarded as one of the “green propellants”. Having served on larger-scale propulsion systems with low cost, HTP is recently reconsidered to be a highly-desired candidate for the monopropellant micropropulsion system for use in micro-satellites. The main objective of this study is to develop a HTP microthruster system to meet the requirements of attitude control of a micro-satellite with mass bellow 50 kg, and the thrust in the range of hundred milli-Newtons.
     Specific problems and difficulties in design arise as the size of the HTP microthruster is reduced. The enhanced heat loss associated with size reducing immediately results in lower thruster operation temperature and poor decomposition efficiency. The two-phase phenomenon of gas bubble in liquid may also significantly affect the decomposition stability in the catalytic microchannel. Specific problems are investigated through theoretical and experimental studies and solutions are incorporated in the design modifications to overcome the problems, such as preheating and pH value adjusting.
     Theoretical analysis with isentropic assumptions is employed to determine the design and test parameters of the HTP microthruster. A prototype of the HTP microthruster packed with 0.7 g silver flake as catalyst is developed and tested. The overall thruster weighs 5.8 g. Test results show that more than 90% C* efficiency and 80% thermal efficiency are achieved with 91.5% HTP at the flow rate of 0.18 g/s. In the ground tests, the HTP microthruster generates 182 mN of thrust under atmospheric condition with a specific impulse bit 101 seconds and the system is expected to generate more than 170 seconds of specific impulse bit in vacuum.

    摘要 I Abstract III 致謝 VI 目錄 VII 表目錄 IX 圖目錄 X 符號 XII 第一章 簡介 1 1-1 研究動機 1 1-2 過氧化氫的優點 2 第二章 過氧化氫微推進器理論分析 6 2-1 文獻回顧 6 2-2 過氧化氫觸媒的選擇 8 2-3 尺度關係 12 2-4 兩相流場的不穩定性 13 2-5 微推進器的熱傳問題 14 2-6 過氧化氫觸媒床最小尺寸評估 16 2-7 推進系統的理論分析 24 2-8 性能分析 27 第三章 實驗設備與實驗方法 3-1 過氧化氫來源 30 3-2 微推進器幾何設計與參數 30 3-3 系統與管路配置 31 3-4 壓力與溫度量測 33 3-5 高靈敏度推力平台與推力量測 35 3-6 訊號擷取與記錄 37 3-7 實驗方法 37 第四章 結果與討論 39 4-1 不同觸媒床預熱溫度的分解反應 39 4-2 過氧化氫微推進器的性能測試結果 41 4-3 啟動延遲時間 42 4-4 觸媒耐久性 43 4-5 推力量測與性能分析 44 第五章 結論 47 參考文獻 50 附錄 A. 69 自述 72

      Ahn, S.-H., Choi, T.-H., Krishnan, S., and Lee, C.-W., “A Laboratory Scale Hydrogen-Peroxide Rocket-Engine Facility,” 39th AIAA/ASME /SAE/ASEE Joint Propulsion Conference and Exhibit, Huntsville, Alabama 20-23 Jul 2003, AIAA-2003-4647.
      Bayt, R., Bruer, K., “System Design and Performance of Hot and Cold Supersonic Microjets,” AIAA-2001-0721.
      Bengtsson, E., http://www.peroxidepropulsion.com
      Chen, X., Li, Y., Zhou Z., and Fan. R., “A homogeneously catalyzed micro-chemical thruster,” Sensor and Actuator A, vol. 108, p.149-154, 2003
      Cheung, W. S., Tilston, J.R., “Testing of a Novel Propulsion System for Micro Air Vehicles,” Proc Inst. Mech. Energy., Vol. 215, Part G, pp.207-218
      Choudhuri, A.R., Baird, B., Gollahalli, S.R., and Schneider, S.J., “Effects of Geometry and Ambient Pressure on Micronozzle Flow,” 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 8-11 July, 2001, Salt Lake City, Utah, AIAA-2001-3331.
      Cotton, F.A., Wilkinson, G., Murillo, C.A., Advanced Inorganic Chemistry, Wiley-Interscience, 6th ed., 1999, pp.1088
      Ertl, G., and Freund, H.-J., “Catalyst and Surface Science,” Physics Today, Vol. 52, pp. 32-38, 1999.
      Hitt, D.L., Zakrzwski, C.M., and Thomas, M.A., “MEMS-based satellite micropropulsion via catalyzed hydrogen peroxide decomposition,” Smart Mater. and Struct., Vol. 10, 2001, pp.1163-1175.
      Kuan, C.-K., Chen, G.-B., and Chao, Y.-C, “Development of a High Test Hydrogen Peroxide (HTP) Micro-Thruster,” 20th International Colloquium on the Dynamics of Explosions and Reactive System, Montreal, July 31, 2005.
      Lyndon B. et al., “Thrust Stand Measures Thrusts of <1 Pound,” http:// www.nasatech.com
      McCormick, J.C., ”Hydrogen Peroxide Rocket Manual,” FMC Cooperation, Buffalo, NY, 1967.
      Morlan, P.W., Wu, P.-K., Ruttle, D.W., Fuller, R.P., Nejad, A.S., and Anderson W.E., “Catalyst Development for Hydrogen Peroxide Rocket Engines,” 35th AIAA Joint Propulsion Conference and Exhibit, 20-24 June, 1999, LA, California, AIAA-1999-2740.
      Mueller, J., “Thruster Options for Microspacecraft: A Review and Evaluation of Existing Hardware and Emerging Technologies,” AIAA 97-3058, 33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Seattle, WA, July 1997.
      Osaki, Y., and Takahashi, K., “Microfluidics of liquid propellant microthruster for pico-satellites.” IEEJ Transactions on Sensors and Micromachines, Vol. 123-E, No. 10, pp.436, 2003.
      Pirault-Roy, L., Kappenstein, C., and Guerin, C., ”Hydrogen Peroxide Decomposition on Various Supported Catalysts Effect of Stabilizers”, Journal of Propulsion and Power, Vol. 18, No. 6, 2002, pp. 1235-1241
    Platt, D., “A monopropellant Milli-Newton Thruster for Attitude Control of Nanosatellites”, 16th Annual USU Conference on Small Satellites, SSC02-VII-4, 2002.
      Rich, B.R., “An Investigation of Heat Transfer on Inclined Plate in Free Convection,” Trans. ASME, Vol. 75, pp.489-499, 1963.
      Richard, B., Malcolm, P., and Sellers, J.J., “Practical Experience with Hydrogen Peroxide Catalysts”, http://www.surrey.ac.uk
      Roth, D.E., “Electronic Beam Studies of Viscous Flow in a Supersonic Nozzle”, AIAA Journal, Vol. 9, No. 5, 1971, pp. 804-811.
      Rusek, J.J., “New Decomposition Catalysts and Characterization Techniques for Rocket-Grade Hydrogen Peroxide,” Journal of Propulsion and Power, Vol. 12, No. 3, 1996, pp. 547-579
      Rusek, J.J., Anderson N.M., “Heterogeneous Decomposition of Rocket Grade Hydrogen Peroxide,” Journal of Propulsion and Power, 0748-4658, Vol.12, No.3, pp.574-579, 1996
    Satterfield, C.N., and Stein, T.W., “Homogenous Decomposition of Hydrogen Peroxide Vapor,” Journal of Physical Chemistry, Vol. 61, pp. 537, November 1957.
      Stephen, R.J., Rajanna, K., Dhar, V., Kalyan Kumar, K.G., and Nagabushanam S., “Strain gauge based thrust measurement system for a stationary plasma thruster,” Meas. Sci. Technol., Vol. 12, 2001, pp.1568–1575.
      Sutton G. P., Biblarz O., “Rocket Propulsion Elements”, 7th Edition , John Wiley & Sons, 2001. 2. Palaszewski, Bryan
      Whitehead, J.C., “Hydrogen Peroxide Propulsion for Smaller Satellite,” 12th IAA/USU Conference on Small Satellites, SSC98-VIII-1, 1998.
      Willis, C.M., “The Effect of Catalyst-Bed Arrangement on Thrust Buildup and Decay Time for a 90 Percent Hydrogen Peroxide Control Rocket”, NASA TN D-516, Washington, D. C., 1960.
      Yetter, R.A., and Yang, V., “Chemical Microthrusters: Combustion Issues and Approaches,” Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park.
      陳建安,2003,“過氧化氫觸媒雙推進熱機引擎之研發”,國立成功大學航空太空工程研究所碩士論文。

    下載圖示 校內:2007-07-19公開
    校外:2007-07-19公開
    QR CODE