簡易檢索 / 詳目顯示

研究生: 吳忠慶
Wu, Chung-Ching
論文名稱: 孔口板誘導聲音特性量測運用於流速預測之實驗與模擬研究
Prediction of a Flow Velocity Using Experimental and Computational Study of Flow-Induced Sound on Airflow through an Orifice
指導教授: 尤芳忞
Yu, Fan-Ming
學位類別: 博士
Doctor
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2016
畢業學年度: 105
語文別: 英文
論文頁數: 106
中文關鍵詞: 誘導聲音非穩定平均雷諾數孔口板功率譜密度聲壓水準伯格法
外文關鍵詞: Flow-induced Sound, URANS, orifice plate, PSD, SPL, Burg method
相關次數: 點閱:97下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在圓管內流動的流體通過孔口板時,在孔口板後方會因管內的截面積突然變大而造成邊界層分離,此一區域包含不穩定的剪切層、渦流、強烈回流等,此區域的壓力波動甚大,是造成誘導聲音的主要來源。本研究是利用流體通過孔口板時會因壓力波動而誘發出聲音,利用麥克風擷取聲音的壓力訊號,然後對聲壓訊號進行頻譜分析,建立流體的流動速度與聲音之間的關係,期能由量測管流內的聲壓訊號即對應出管內平均流體的流動速度。
    首先,利用實驗進行初步驗證。設備包含空氣幫浦、平直圓管、麥克風、孔口板及其相關儀器,實驗中的平均入口流體速度由0.88 m/s增加至1.35 m/s、實驗環境在溫度攝氏25度、大氣壓力條件下進行。孔口板是放置於水平的圓管內並完全貼合圓管的內徑,且麥克風裝置在孔口板下游的管壁上。因為流體於管內的平均流動速度很低,可視為不可壓縮流。實驗以空氣幫浦為其主要氣源,讓空氣沿平直圓管流動,俟其通過孔口板時,再由麥克風擷取其聲壓訊號,然後利用快傅利葉轉換(FFT)來進行頻譜及回歸分析,由初步的實驗結果發現其聲壓訊號的功率譜密度(PSD)會隨流體的速度增加而上升,並呈現正比的關係。
    其次,穩定的氣源,不僅可產生方向一致的入口流體速度,也可減少因供氣設備所造成的噪音。因此,選擇安全、經濟、有效的壓縮空氣為主要實驗的供氣來源,其實驗設備包括儲氣瓶、緩衝罐、電磁閥、平直圓管、孔口板和麥克風等。實驗中的平均入口流體速度由9.89 m/s增加至33.25 m/s、雷諾數從6.6×103 增加到 2.3×104、實驗環境在溫度攝氏25度及大氣壓力條件下進行。此實驗先將壓縮空氣由儲氣瓶降壓至緩衝罐,以達到實驗所設定的壓力值,再利用電磁閥控制其出氣量(關啟約1秒),使空氣沿平直圓管流動,俟其通過孔口板時由麥克風擷取其聲壓訊號,然後利用快傅利葉轉換(FFT)來進行頻譜及其回歸分析,實驗結果證明了其聲壓訊號的PSD與流體速度的正相關的關係,並建立聲壓與氣流速度的關係曲線,而且可利用此一曲線來預測流場速度。為了再次檢驗實驗分析的趨勢,將利用訊號分析的伯格法(the Burg method)來進行頻譜分析及找出其特徵頻率,仍然獲得一致的趨勢。整體而言,聲壓訊號的PSD與雷諾數(以氣流速度基礎)有強烈的正相關的關係。
    利用計算流體力學(CFD)的模擬工具FLUENT中的非穩態平均雷諾數法(URANS)來預測氣流在圓管內的流場行為與聲壓機制。氣流速度由9.89增加至33.25 m/s,其誘導聲音由81.9增加至126.7分貝,模擬結果指出誘導聲音的峰值與其雷諾數成正比,此結果與實驗量測趨勢一致。使用麥克風量測聲壓訊號來推測其管流的氣流速度經實驗的快速傅利葉轉換與伯格法的分析,都呈現一致的正向比例趨勢,而且CFD模擬結果也指出氣流經由孔口板的干擾後,誘導出聲音且隨氣流速度增加而放大,根據以上結果,可證明管流的流速與其產生的聲音有很好的正向比例關係。

    This study is conducted to analyze the characteristic sound signals and to reveal the relationship between averaged incoming air velocity and the flow-induced sound characteristics behind an obstacle in a pipe with various Reynolds numbers. A verifiable experiment of the quantitative analysis of sound pressure signals correlated with averaged air velocity in a pipe has been conducted using an apparatus that includes an air pump in conjunction with a pipe, a microphone, and an orifice plate, among other instruments. The analysis of the results using the fast Fourier transform (FFT) and statistical regression show that the pressure fluctuation of sound spectra can be correlated to the averaged incoming air velocity of a pipe and the approach for measuring the averaged incoming air velocity using a microphone can be justified. To ensure that the sound signals be positively identified from experimental data, the Burg method with autoregressive (AR) model is performed the analysis of the measured signals to find the characteristic frequency. Overall, it is existed a good trend between the power spectral density (PSD) of the sound pressure and the Reynolds number based on the incoming air velocity can be obtained. The experimental results using the FFT show that the pressure fluctuation of sound spectra is related to the averaged incoming air velocity in the pipe from the regression analysis, which can form the relation curve. The aerodynamic data and complicated flow structures are visualized using commercial computational fluid dynamics (CFD) package FLUENT, with Unsteady Reynolds-averaged Navier-Stokes (URANS) modelling and to use a compressible pressure-based solver simulations of turbulence flow. Simulation results of URANS indicate a similar trend with the experimental results which be pointed out that sound amplitudes are proportional to the Reynolds number as shown on comparison with experimental results, it can be shown that the approach for measuring the averaged incoming air velocity using a microphone can be validated.
    From the CFD simulations the flow field mechanism and the sound amplitude of air through the orifice in the pipe can be revealed. It has been found that the peak amplitude of sound is located at the edge of orifice plate, i.e. the loudest sound at this position is generated by pressure fluctuations of unsteady flow. It concludes that a microphone can be used to measure the sound pressure fluctuation of downstream of the orifice and this results can be correlated to the incoming air velocity.

    ABSTRACT IN CHINESE............i ABSTRACT..............x ACHNOWLEDGEMENT............xii CONTENTS...............xiii LIST OF TABLES............xv LIST OF FIGURES.............xvi NOMENCLATURE............xviii CHAPTER I INTRODUCTION...........1 1.1 Flowmeter of Variable Differential Pressure 5 1.1.1 Venturi Tube 6 1.1.2 Orifice 7 1.1.3 Flow Nozzle 8 1.1.4 Pitot Tube 8 1.2 The Research Related to Current Research 9 1.3 Motivations and Objectives 11 1.3.1 Motivations 12 1.3.2 Objectives 13 CHAPTER II THEORETICAL BACKGROUND........ 14 2.1 Bernoulli Effect 14 2.2 Poisson Equation for a Turbulent Shear Flow 15 2.3 Wall Pressure Spectrum in Turbulent Pipe Flows 16 2.4 Basic Concept of orifice meter 18 2.5 On Sound Generated Aerodynamically 20 2.6 The Burg Method with AR Model 22 2.7 Sound Pressure Level 24 CHAPTER III ON THE DESIGN EXPERIMENTS, EXPERIMENTAL APPARATUS AND DATA ACQUISITION METHODS....26 3.1. Verification of Experimental Method 28 3.2. Data Acquisition Device 30 3.3. Calibration of the Microphone 31 3.4 Experimental Design 34 3.4.1 Experimental Method 36 3.4.2 Experiment apparatus 37 3.4.2.1 Pressure regulator 38 3.4.2.2 Barometric pressure indicator 39 3.5 Signal Acquisition System 40 3.5.1 Signal Acquisition Device 40 3.5.1.1 USB4431 41 3.5.2 Virtual Instrument Program 42 CHAPTER IV EXPERIMENTAL TECHNIQUE AND DATA ANALYSIS…...44 4.1 Distinguishing Signals 44 4.2 Effect of Orifice Diameter 47 4.3 Signal Verification 50 4.4 Experimental Results 54 4.4.1 Signal Acquisition 54 4.4.2 Signal Processing 57 CHAPTER V STATISTICAL ANALYSIS OF EXPERIMENTAL DATA...61 5.1 The Burg AR Method 62 5.1.1 The Features of the Burg Method 62 5.1.2 Order Determination in AR Model 63 5.1.3 AR Model for Frequency Spectrum Analysis 65 5.2 Comparison with the Experimental Results 66 CHAPTER VI NUMERICAL SIMULATION........69 6.1 Numerical Method 70 6.1.1 Governing equations 70 6.1.2 Grid independence 71 6.1.3 k-ε Turbulence Model 75 6.1.4 Boundary conditions 77 6.1.5 Solution Procedure 78 6.2 Simulation Results 79 6.2.1 Flow Visualization 79 6.2.2 Pressure Variation 81 6.3 Comparison with the Experimental Data 82 CHAPTER VII CONCLUSION.......... 87 REFERENCES.............. 92 PUBLICATIN LIST.............106

    [1] T. M. Farabee and M. J. Casarella, “Effect of surface irregularity on turbulent boundary layer wall pressure fluctuations”, Journal of Vibration, Acoustics, Stress, and Reliability in Design, Vol.106, No.3, pp.343-350, 1984.
    [2] T. M. Farabee and M. J. Casarella, “Measurements of fluctuating wall pressure for separated reattached boundary layer flows”, Journal of Vibration, Acoustics, Stress, and Reliability in Design, Vol.108, No.3, pp.301-307, 1986.
    [3] M. M. Rahman, R. Biswas and W. I. Mahfuz, “Effects of beta ratio and Reynold’s number on coefficient of discharge of orifice meter”, Journal of Agriculture & Rural Development, Vol.7, No.1&2, pp.151-156, 2009.
    [4] Zhaoyan Zhang, Luc Mongeau, Steven H. Frankel and Scott Thomson, “Sound generation by steady flow through glottis-shaped orifices”, Acoustical Society of America, Vol.116, No.3, pp.1720-1728, 2004.
    [5] Y. Nakamura and N. Fukamachi, “Sound generation in corrugated tubes”, Fluid Dynamics Research, Vol.7, pp.255-261, 1991.
    [6] M. Nakao, K. Kawashima and T. Kagawa, “Measurement-integrated simulation of wall pressure measurements using a turbulent model for analyzing oscillating orifice flow in a circular pipe”, Computers & Fluids, Vol.49, No.1, pp.188-196, 2011.
    [7] M. J. Lighthill, “On sound generated aerodynamically I. general theory”, Porceedings of The Royal Society, Vol.211, No.1107, pp.564-587, 1952.
    [8] Alan Powell, “Theory of vortex sound”, Acoustical Society of America, Vol.36, No.1, pp.177-195, 1964.
    [9] S. C. Crow, “Aerodynamic sound mission as a singular perturbation problem”, Studies of Applied Mathematics, Vol.49, No.1, pp.21-44, 1970.
    [10] P. E. Doak, “Fluctuating total enthalpy as the basic generalized acoustic field”, Theoretical and Computational Fluid Dynamics, Vol.10, pp.115-133, 1998.
    [11] Uno Ingard, “Acoustic nonlinearity of an orifice”, Acoustical Society of America, Vol.42, No.1, pp.6-17, 1967.
    [12] Mats Abom, Sabry Allam and Susann Boij, “Aero-acoustics of flow duct singularities at low Mach numbers”, In 12th AIAA/CEAS Aeroacoustics conference, Cambridge, Massachusetts, pp.2006-2687, 2006.
    [13] A. B. C. Anderson, “A jet-tone orifice number for orifices of small thickness diameter ration”, Acoustical Society of America, Vol.26, No.1, pp.21-25, 1954.
    [14] K. J. Hammad, M. V. Ötügen and E. B. Arik, “A PIV study of the laminar axisymmetric sudden expansion flow”, Experiments in Fluids, Vol.26, No.3, pp.266-272, 1999.
    [15] G. C. J. Hofmans, “Vortex sound in confined flows”, Ph.D. thesis, Technische Universiteit Eindhoven Press, Netherlands, pp.114-144, 1998.
    [16] Danielle J. Moreau and Con J. Doolan, “Flow-induced sound of wall-mounted finite length cylinders”, AIAA Journal, Vol.51, No.10, pp.2493-2502, 2013.
    [17] M. Mathias, A. N. Stokes, K. Hourigan and M. C. Welsh, “Low-level flow-induced acoustic resonances in ducts”, Fluid Dynamics Research, Vol.3, pp.353-356, 1988.
    [18] Y. P. Wang, J. Chen, H. C. Lee and K. M. Li, “Accurate simulation of surface pressure fluctuations and flow-induced noise bluff body at low Mach numbers”, 7th International Colloquium on Bluff Body Aerodynamics and Applications, pp.1334-1348, 2012
    [19] Kenneth N. Stevens, Acoustic phonetics, Cambridge MIT press, London, pp.55-127, 1998.
    [20] Jason H.T. Bates, Lung mechanics: an inverse modeling approach, Cambridge University Press, New York, pp.97-107, 2009.
    [21] Dean E. Capone and Gerald C. Lauchle, “Calculation of turbulent boundary layer wall pressure spectra”, The Pennsylvania State University Applied Research Laboratory Technical Report 93-10, pp.4-11, 1993.
    [22] Robert S. Lees and C. Forbes Dewey Jr., “Phonoangiography: a new noninvasive diagnostic method for studying arterial disease”, Proceeding of the National Academy of Sciences, Vo.67, No.2, pp.935-942, 1970.
    [23] J. P. Burg, “Maximum entropy spectral analysis”, presented at the 37th Annual International S.E.G. Meeting, Oklahoma, 1967.
    [24] Ahmet Alkan and M. Kemal Kiymik, “Comparison of AR and Welch methods in epileptic seizure detection”, Journal of Medical Systems, Vol.30, No.6, pp.413-419, 2006.
    [25] Colin H. Hansen, “Fundamentals of Acoustics”, Lecture Notes, Department of Mechanical Engineering, University of Adelaide.
    [26] Enzo O. Macagno and Tin-Kan Hung, “Computational and experimental study of a captive annular eddy”, Journal of Fluid Mechanics, Vol.28, No.1 pp.43-64, 1967.
    [27] I. Iribarne, F. Frantisak, R. L. Hummel and J. W. Smith, “An experimental study of instabilities and other flow properties of a laminar pipe jet”, AIChE Journal, Vol.18, No.4, pp.689-698, 1972.
    [28] P. Monnet and D. Sigli, “Some new aspects of the slow flow of a viscous fluid through an axisymmetric duct expansion or contraction. I - Numerical part”, Applied Scientific Research, Vol.39, No.3, pp.215-232, 1982.
    [29] Oliver Büker, Peter Lau and Karsten Tawackolian, “Reynolds number dependence of an orifice plate”, Flow Measurement and Instrumentation, Vol.30, pp.123-132, 2013.
    [30] J. Job Farber, M. B. and James H. Purvis, “Conduction of cardiovascular sound along arteries”, Circulation Research, Vol.12, pp.308-316, 1963
    [31] A. Cummings and I. -J. Chang, “The transmission of intense transient and multiple frequency sound waves through orifice plates with mean fluid flow”, Revue de Physique Appliquee, Vol.21, No.2, pp.151-161, 1986.
    [32] Seyed Mehdi Ashrafizadeh and Hojat Ghassemi, “Experimental and numerical investigation on the performance of small-sized cavitating venturis”, Flow Measurement and Instrumentation, Vol.42, pp.6-15, 2015.
    [33] Wolfgang Jitschin, “Gas flow measurement by the thin orifice and the classical Venturi tube”, VACUUM, Vol.76, No.1, pp.89-100, 2004.
    [34] S. Boij and B. Nilsson, “Scattering and absorption of sound at flow duct expansions”, Journal of Sound and Vibration, Vol.289, No.3, pp.577-594, 2008.
    [35] F. R. Fricke, “Pressure fluctuations in separated flows”, Journal of Sound and Vibration, Vol.17, No.1, pp.113-123, 1971.
    [36] F. C. Johansen, “Flow through pipe orifices at low Reynolds numbers”, Proceedings of the Royal Society of London, Vol.126, No.801, pp.231-245, 1930.
    [37] N. K. Agarwal, “The sound field in fully developed turbulent pipe flow due to internal flow separation, part I: wall-pressure fluctuations”, Journal of Sound and Vibration, Vol.169, No.1, pp.89-109, 1994.
    [38] AGA 3.1: Orifice metering of natural gas and other related hydrocarbon fluids: Part 1, American Gas Association, Washington DC, pp.6-37, 1990.
    [39] Peter D. Lysak, “Modeling the wall pressure spectrum in turbulent pipe flows”, Journal of Fluids Engineering, Vol.128, No.2, pp.216-222, 2005.
    [40] Afshin Goharzadeh and Peter Rodgers, “Experimental measurement of laminar axisymmetric flow through confined annular geometries with sudden inward expansion”, Vol.131, No.12, pp.124501.1-124501.4, 2009.
    [41] Christopher James Rosser and Anurag Agarwal, “The acoustic of suction”, The 7th Conference of Forum Acusticum 2014 Krakow at the AGH University of Science and Technology, Poland, 2014.
    [42] Tarmo M. Pukkila, “An improved estimation method for univariate autoregressive models”, Journal of Multivariate Analysis, Vol.27, pp.422-433, 1998.
    [43] İnan Güler, M. Kemal Kiymik, and Nihal Fatma Güler, “Order determination in autoregressive modeling of diastolic heart sounds”, Journal of medical systems, Vol.20, No.1, pp.11-17, 1996.
    [44] A. Boardman, F. S. Schlindwein and A. P. Rocha, “A study on the optimum order of autoregressive models for heart rate variability”, Physiological Measurement, Vol.23, pp.325-336, 2002.
    [45] H. Akaike, “Fitting autoregressive models for prediction”, The Institute of Statistical Mathematics, Vol.21, pp.243-247, 1969.
    [46] A. Sadiki, A. Maltsev, B. Wegner, F. Flemming, A. Kempf and J. Janicka, “Unsteady methods (URANS and LES) for simulation of combustion systems”, International Journal of Thermal Sciences, Vol.45, pp.760-773, 2006.
    [47] B. E. Launder and D. B. Spalding, “The numerical computation of turbulent flows”, Computer Methods in Applied Mechanics and Engineering, Vol.3, pp.268-289, 1974.
    [48] Zhiwei Hu, C. L. Morfey and Neil D. Sandham, “Sound radiation from a turbulenc boundary layer”, Physics of Fluids, Vol.18, pp.98-101, 2006.
    [49] Paul Croaker, Alex Skvortsov and Nicole Kessissoglou, “A simple approach to estimate flow-induced noise from steady state CFD data”, Proceedings of Acoustics, No.54, pp.1-8, Gold Coast, Australia, 2011.
    [50] P. Durrieu, G. Hofmans, G. Ajello, R. Boot, Y Aurégan, A. Hirschberg and M. C. A. M. Peters, “Quasisteady aero-acoustic response of orifices”, Acoustical Society of America,Vol.110, No.4, pp.1859-1872, 2001.
    [51] Hoda S. Seddeq, “Factors influencing acoustic performance of sound absorptive materials”, Australian Journal of Basic and Applied Sciences, Vol.3, No.4, pp.4610-4617, 2009.
    [52] Philp Leistner and Steffen Hettler, “Sound absorption of microperforated duct systems”, HVAC&R Research, Vol.10, No.3, pp.265-274, 2004.
    [53] Farabee and Theodore M., An experiment investigation of wall pressure fluctuation beneath non-equilibrium turbulent flows, Ph.D. Thesis of Naval Ship Research and Development Center, Bethesda Maryland, 1986.
    [54] D. Geropp and H. -J. Odnthal, “Flow rate measurements in turbulent pipe flows with minimal loss of pressure using a defect-law”, Flow Measurement and Instrumentation, Vol.12, No.1, pp.1-7, 2001.
    [55] Bates, J. H. T., Sly, P. D., Sato, J., Davey, B. L. K. and Suki, B., “Correcting for the Bernoulli effect in lateral pressure measurements”, Pediatric Pulmonology, Vol.12, No.4, pp.251-256, 1992.
    [56] Shaya Jamshidi, Design of a novel portable flow meter for measurement of average and peak inspiratory flow, Master’s thesis of the University of Maryland, College Park, 2009.
    [57] W. L. Keith, D. A. Hurdis and B. M. Abraham, “A comparison of turbulent boundary layer wall pressure spectra”, Journal of Fluids Engineering, Vol.114, No.3, pp.338-347, 1992.
    [58] Silviu Folea, Practical applications and solutions using LabVIEWTM Software, InTech Publishing, Rijeka, pp.229-252, 2011.
    [59] Chia-Hsien Lin, Implementation of lung sound acquisition and analysis system, Master’s thesis of NCKU, Tainan, 2007.
    [60] Katherine L. Kuan, A framework for automated heart and lung sound analysis using a mobile telemedicine platform, Master’s thesis of the Massachusetts Institute of Technology, 2010.
    [61] Roger C. Baker, An introductory guide to flow measurement, The Cromwell Press, Wiltshire, pp.1-69, 2002.
    [62] Paranv Joshi, Xiaofeng Liu and Joseph Katz, “Effect of mean and fluctuating pressure gradients on boundary layer turbulence”, Journal Fluid Mechanics, Vol.748, pp.36-84, 2014.
    [63] M. K. Bull and N. K. Agarwal, “Characteristics of the flow separation due to an orifice plate in fully developed turbulent pipe flow”, Eighth Australasian Fluid Mechanics Conference, Newcastle, pp.4B.1-4, 1983.
    [64] T. Sridevi, Dhana Sekhar and V. Subrahmanyam, “Comparision of flow analysis through a different geometry of flowmeters using FLUENT software”, International Journal of Research in Engineering and Technology, Vol.3, No.8, pp.141-149, 2014.
    [65] Wei-Ling Chen, Chia-Hung Lin, Tainsong Chen, Pei-Jarn Chen and Chung-Dann Kan, “Stenosis detection using Burg method with autoregressive model for hemodialysis patients”, Journal of medical and biological engineering, Vol.33, No.4, pp.356-362, 2012.
    [66] Chien-Hsiung Tsai, Lung-Ming Fu, Chang-Hsien Tai, Yen-Loung Huang and Jik-Chang Leong, “Computational aero-acoustic analysis of a passenger car with a rear spoiler”, Applied mathematical modelling, Vol.33, Iss.9, pp.3661-3673, 2009.
    [67] J. E. Ffowcs Williams and D. L. Hawkings, “Sound generation by turbulence and surfaces in arbitrary motion”, Philosophical Transactions of the Royal Society of London, Vol.264, No.1151, pp.321-342, 1969.
    [68] Mihaela Popescu, “Behavior of flow-induced vibration in corrugated pipes”, 20th AIAA Computational Fluid Dynamics Conference, Vol.2, pp.1518-1535, 2011.
    [69] Ulf R. Kristiansen and Geir A. Wiik, “Experiments on sound generation in corrugated pipes with flow”, Acoustical Society of America, Vol.121, No.3, pp.1337-1344, 2007.
    [70] Alina Gavrijaseva, Olev Martens and Raul Land, “Acoustic spectrum analysis of genuine and counterfeit Euro coins”, Elektronika ir Elektrotechnika, Vol.21, No.3, pp.54-57, 2015.
    [71] Miller A., Lees R. S., Kistler J. P., Abbott W. M., “Effects of surrounding tissue on the sound spectrum of arterial bruits in vivo”, Stroke, Vol.11, No.4, pp.394-398, 1980.
    [72] Zaki D. Husain, “Theoretical Uncertainty of Orifice Flow Measurement”, Daniel Measurement and Control White Papers, pp.1-7, 2010.
    [73] Michael Reader Harris, Neil Barton and David Hodges, “The effect of contaminated orifice plates on the discharge coefficient”, Flow Measurement and Instrumentation, Vol.25, pp.2-7, 2012.
    [74] M. A. Ibrahim and R. W. Melik, “Physical parameters affecting acoustic absorption characteristics of fibrous materials”, Proceedings of the mathematical and physical society of Egypt, Vol.46, pp.125-130, 1978.
    [75] T. Koizumi, N. Tsujiuchi and A. Adachi, “The development of sound absorbing materials using natural bamboo fibers”, WIT Press, Vol.59, pp.157-166, 2002.
    [76] Andrea Cioncolini, Fabio Scenini and Jonathan Duff, “Micro-orifice single-phase liquid flow:Pressure drop measurements and prediction”, Experimental Thermal and Fluid Science, Vol.65, pp.33-40, 2015.
    [77] Emrah Özahi, “An analysis on the pressure loss through perforated plates at moderate Reynolds numbers in turbulent flow regime”, Flow Measurement and Instrumentation, Vol.43, pp.6-13, 2015.
    [78] Bang M. Kim and William H. Corcoran, “Experimental measurements of turbulence spectra distal to stenoses”, Journal of Biomechanics, Vol.7, No.4, pp.335-342, 1974.
    [79] X. Gloerfelt and P. Lafon, “Direct computation of the noise induced by a turbulent flow through a diaphragm in a duct at low Mach number”, Computers & Fluids, Vol.37, No.4, pp.388-401, 2008.
    [80] P. A. Nelson and C. L. Morfey, “Aerodynamic sound production in low speed flow ducts”, Journal of Sound and Vibration, Vol.79, No.2, pp.263-289, 1981.
    [81] S. Boij and B. Nilsson, “Reflection of sound at area expansions in flow duct”, Journal of Sound and Vibration, Vol.260, No.3, pp.477-598, 2003.
    [82] G. Kooijman, P. Testud, Y Aurégan and A. Hischberg, “Multimodal method for scattering of sound at a sudden area expansion in a duct with subsonic flow”, Vol.310, No.4-5, pp.902-922, 2008.
    [83] Christophe Bogey and Christophe Bailly, “Effects of inflow conditions and forcing on subsonic jet flows and noise”, AIAA Journal, Vol.43, No.5, pp.1000-1007, 2005.
    [84] Baafour Nyantekyi-Kwakye, Shawn P. Clark, Mark F. Tachie, Jarrod Malenchak and Getnet Muluye, “Flow characteristics within the recirculation region of three-dimensional turbulent offset jet”, Journal of Hydraulic Research, Vol.53, No.2, pp.230-242, 2015.
    [85] Kazys Kazlauskas, “The burg algorithm with extrapolation for improving the frequency extimation”, Informatica, Vol.22, No.2, pp.177-188, 2011.
    [86] K. Bagchi, S. K. Gupta, A. Kushari and N. G. R. Iyengaz, “Experimental study of pressure fluctuations and flow perturbations in air flow through vibrating pipes”, Journal of Sound and Vibration, Vol.328, pp.441-455, 2009.
    [87] Huiyu Huang and Yang Hong, “Acoustic emission signal acquisition and analysis on tool wear”, Key Engineering Materials, Vol.621, pp.171-178, 2014.
    [88] P. O. A. L. Davies, “Flow-acoustic coupling in ducts”, Journal of Sound and Vibration, Vol.77, No.2, pp.191-209, 1981.
    [89] Y. Ivanova, V. Vassilev, P. Djondjorov and S. Djoumaliisky, “Experimental-theoretical approach to the identification of effective sound attenuation panels form recycled materials”, Bulgarian Chemical Communications, Vol.47, Issue B, pp.442-449, 2015.
    [90] Kamal Selvam, Jorge Peixinho and Ashley P. Willis, “Localised turbulence in a circular pipe flow with gradual expansior”, Journal of Fluid Mechanics, Vol.771, pp.R2-1-R2-13, 2015.
    [91] Ch. -I. Hung and K. -H Kuei, “Transient mixed convection of a backward-facing step with a periodically heated wall”, Acta Mechanica, Vol.120, pp.233-241, 1997.
    [92] M. S. M. Ali, C. J. Doolan and V. Wheatley, “The sound generated by a square cylinder with a splitter plate at low Reynolds number”, Journal of Sound and Vibration, Vol.330, Issue.15, pp.3620-3635, 2011.
    [93] J. Su, J. Rupp, A. Garmory and J. F. Carrotte, “Measurements and computational fluid dynamics predictions of the acoustic impedance of orifices”, Journal of Sound and Vibration, Vol.352, pp.174-191, 2015.
    [94] A. Elsaey, A. Abou, El-Azm Aly and M. Fouad, “CFD simulation of fractal-shaped orifices for flow measurement improvement”, Flow Measurement and Instrumentation, Vol.36, pp.14-23, 2014.
    [95] M. S. Shah, J. B. Joshi, A. S. Kalsi, C. S. R. Prasad and D. S. Shukla, “Analysis of flow through an orifice meter: CFD simulation”, Chemical Engineering Science, Vol.71, pp.300-309, 2012.
    [96] S. Shaaban, “Optimization of orifice meter’s energy consumption”, Chemical Engineering Research and Design, Vol.92, pp.1005-1015, 2014.
    [97] M. J. Lighthill, “On Sound Generated Aerodynamically, II. Turbulence as a source of sound”, Proceedings of the Royal Society of London, Vol.A222, No.11048, pp.1-32, 1954.
    [98] Meng Wang, Jonathan B. Freund and Sanjiva K. Lele, “Computational Prediction of Flow-Generated Sound”, The Annual Review of Fluid Mechanics, Vol.38, pp.483-512, 2006.
    [99] William K. Blake, Mechanics of flow-induced sound and vibration, Academic Press Inc, Orlando, pp.44-118, 497-587, 1986.M. S. Howe,
    [100] Acoustics of Fluid-Structure Interactions, Cambridge University Press, UK, pp.157-252, 1998.
    [101] Druck DPI 140 Series User Manual, General Electric Inc., K023 Issue No.7, pp.1-28.
    [102] Instruction manual of sound intensity calibrator Type 3541, Brüel & Kjær Inc, 1990.
    [103] Sound and Vibration Toolkit User Manual, National Instruments Inc, Texas, ch.8, 2004.
    [104] FLUENT 6.1 Acoustics Module Manual, Fluent Inc., Lebanon, NH, pp.1.1-2.7, 2005.
    [105] FLUENT 6.3 User's Guide, Fluent Inc., Lebanon, NH, pp.21.1-21.28, 2006.
    [106] ANSYS FLUENR 12.0 theory guide, Fluent Inc., Lebanon, NH, pp.12.2-12.57, 2009.

    下載圖示 校內:2017-01-01公開
    校外:2017-01-01公開
    QR CODE