| 研究生: |
王郁嘉 Wang, Yu-Chia |
|---|---|
| 論文名稱: |
Mn濃度變化對MnSb2Te4薄膜的物理特性影響 Mn concentration variation on physical properties of MnSb2Te4 thin films |
| 指導教授: |
黃榮俊
Huang, Jung-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 拓樸絕緣體 、分子束磊晶 、能帶結構 、角分析光電子能譜 、超導量子干涉儀 |
| 外文關鍵詞: | magnetic topological insulator, band structure, molecular beam epitaxy, surface state, ARPES, Superconducting quantum interference device |
| 相關次數: | 點閱:124 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
拓樸絕緣體特殊的能帶結構導致此種材料在內部絕緣而在邊緣或表面導電,而若是將將磁性元素引入到Sb2Te3等三維拓撲絕緣體中,則會破壞時間反衍對稱性 (time reversal symmetry),使其具有能實現量子異常霍爾效應 (Quantum Anomalous Hall Effect, QAHE) 的潛力。而MnSb2Te4即為一種被預測為本質性磁性拓樸絕緣體的材料。
本實驗以分子束磊晶系統(Molecular beam epitaxy,MBE) 透過調控分壓比以及成長溫度以及變更退火方式得到晶向結構穩定的磁性拓樸絕緣體MnSb2Te4薄膜,再改變不同Mn的分壓比成長MnSb2Te4薄膜,並進行物理性質的分析。先以反射高能電子繞射儀(Reflection high-energy electron diffraction,RHEED)確認薄膜品質,之後使用X光繞射儀(X-ray diffraction, XRD)進行晶格結構的分析,透過調控Mn的分壓比觀察樣品結構的變化。使用原子力顯微鏡(Atomic force microscope, AFM)觀察薄膜表面因為溫度變化及不同Mn分壓比所造成的表面形貌及表面平整度變化。利用穿透式電子顯微鏡(Transmission electron microscope,TEM)確認薄膜為層狀結構以及樣品厚度,再使用能量散佈分析儀(Energy dispersive spectrometer, EDS)分析薄膜的化學成分,確認樣品的元素比例。藉由X射線光電子能譜儀(X-ray photoelectron spectrometer, XPS)及拉曼光譜儀(Raman spectrometer)確認薄膜的元素和聲子的光學震動模式。利用超導量子干涉儀(Superconducting Quantum Interference Device, SQUID)量測不同Mn分壓比下成長的薄膜整體磁性行為。最後使用角解析光電子能譜(Angle resolved photoemission spectroscopy, ARPES)量測MnSb2Te4薄膜的能帶結構,由導帶與價帶間的能隙發現表面態存在,證明MnSb2Te4為拓樸絕緣體。
In this study, MnSb2Te4 magnetic topological insulator thin films were grown on the sapphire (0001) substrate with molecular beam epitaxy (MBE) system. By controlling the growth temperature and flux ratio, the high quality and single-phase structure of MnSb2Te4 thin films are performed. Using X-ray diffraction (XRD), the single crystal along c-axis direction in thin films is confirmed and the structure change with adjusting the Mn flux ratio. The elements and the optical vibration modes of thin films are identified by X-ray photoelectron spectrometer (XPS) / Hard X-ray Photoelectron Spectroscopy (HAXPES) and Raman spectra. The layered structure and thickness of thin films are characterized with X-ray reflectometry (XRR) and transmission electron microscope (TEM), and chemical composition is analyzed by energy dispersive spectrometer (EDS), which verifies the stoichiometry of thin films. The surface flatness of thin films is affected by the different growth temperature and Mn flux ratio from the observation of atomic force microscope (AFM). To observe the Mn Sb anti-site defects through scanning tunneling microscope (STM). From angle resolved photoemission spectroscopy (ARPES) results, the surface state can be observed, confirming that the MnSb2Te4 films are topological insulators.
The magnetic behavior of the thin films was confirmed with Superconducting quantum interference device (SQUID).
[1] Acarlso3, Thin Film Growth Mod. Transferred from en.wikipedia to Commons., 2007.
[2] Anderson, T.L. and H.B. Krause, Refinement of the Sb2Te3 and Sb2Te2Se structures and their relationship to nonstoichiometric Sb2Te3−y Se y
compounds. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 1974. 30(5): p. 1307-1310.
[3] Bvcrist, Basic components of a monochromatic XPS system. Wikimedia Commons, the free media repository, 2014.
[4] Chang, C.Z. and M. Li, Quantum anomalous Hall effect in time-reversal-symmetry breaking topological insulators. J Phys Condens Matter, 2016. 28(12): p. 123002.
[5] Chang, C.Z., et al., Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science, 2013. 340(6129): p. 167-70.
[6] Damascelli, A., Probing the Electronic Structure of Complex Systems by ARPES. Physica Scripta, 2004. T109.
[7] Furiouslettuce, Bragg Diffraction Planes. Wikimedia Commons, the free media repository, 2009.
[8] Hasegawa, S., Reflection high-energy electron diffraction. Characterization of Materials, 2012. 97: p. 1925-1938.
[9] He, K., The Quantum Hall Effect Gets More Practical. Physics, 2015. 8.
[10] Huang, J.C.A., ph. D Thesis. University of Illinois
[11] Jiles, D., Introduction to Magnetism and Magnetic Materials. 3rd Edition edn. 2015.
[12] Kane, C.L. and E.J. Mele, 9Z2 topological order and the quantum spin Hall effect. Phys Rev Lett, 2005. 95(14): p. 146802.
[13] Kane, C.L. and E.J. Mele, Quantum spin Hall effect in graphene. Phys Rev Lett, 2005. 95(22): p. 226801.
[14] Kou, X., et al., Interplay between different magnetisms in Cr-doped topological insulators. ACS Nano, 2013. 7(10): p. 9205-12.
[15] Levy, I., et al., Compositional Control and Optimization of Molecular Beam Epitaxial Growth of (Sb_2 Te_3)(1-X)( MnSb_2 Te_4)(X) Magnetic Topological Insulators. Crystal Growth & Design, 2022. 22(5): p. 3007-3015.
[16] Li, H., et al., Glassy magnetic ground state in layered compound MnSb_2 Te_4. Science China Materials, 2021. 65(2): p. 477-485.
[17] Liu, Y., et al., Site Mixing for Engineering Magnetic Topological Insulators. Physical Review X, 2021. 11(2).
[18] Murakami, T., et al., Realization of interlayer ferromagnetic interaction in MnSb(2)Te(4) toward the magnetic Weyl semimetal state. Phys Rev B, 2019. 100.
[19] Ottesen, V., A Molecular Beam Epitaxy reaction chamber concept drawing. Wikimedia Commons, the free media repository, 2011.
[20] Qi, X.L. and S.C. Zhang, The quantum spin Hall effect and topological insulators. Physics Today, 2010. 63(1): p. 33-38.
[21] Rajput, I., et al., Crystal growth and x-ray diffraction characterization of Sb_2 Te_3 single crystal. 2019.
[22] Singh, M.P., et al., Study of Thermometry in Two-Dimensional Sb(2)Te(3) from Temperature-Dependent Raman Spectroscopy. Nanoscale Res Lett, 2021. 16(1): p. 22.
[23] Sosso, G.C., S. Caravati, and M. Bernasconi, Vibrational properties of crystalline Sb(2)Te(3) from first principles. J Phys Condens Matter, 2009. 21(9): p. 095410.
[24] Wimmer, S., et al., Mn-Rich MnSb(2) Te(4) : A Topological Insulator with Magnetic Gap Closing at High Curie Temperatures of 45-50 K. Adv Mater, 2021. 33(42): p. e2102935.
[25] Xi, M., et al., Relationship between Antisite Defects, Magnetism, and Band Topology in MnSb(2)Te(4) Crystals with T(C) approximately 40 K. J Phys Chem Lett, 2022. 13(47): p. 10897-10904.
[26] Ya-Wen Tsai, J.-L.W., Pi-Gang Luan, From Quantum Hall Effect to Topological Photonics/Acoustics. 科儀新知, 2017. 211 期: p. 68-79.
[27] Yan, J.Q., et al., Evolution of structural, magnetic, and transport properties in MnBi2−xSbxTe4. Physical Review B, 2019. 100(10).
[28] Zhang, H., et al., 15Topological insulators in Bi2Se3, Bi2Te3 and Sb_2 Te_3 with a single Dirac cone on the surface. Nature Physics, 2009. 5(6): p. 438-442.
[29] 王洸富, 屏蔽電荷對 180 度域壁成核動態機制之影響. 成功大學物理學系學位論文, 2010.
[30] 林宗謀, 磊晶拓樸絕緣體(Sb1-xBix)2Te4. 國立成功大學, 2019.
[31] 國立彰化師範大學物理學系洪連輝、陳建淼, 穿透式電子顯微鏡(Transmission Electron Microscopy:TEM). 科學Online, 2009. 現代科技簡介 Introductory Modern Technology.
[32] 張泰榕, 拓樸材料與拓樸能帶理論. 物理雙月刊, 2017. 39: p. 21-30.
[33] 莊霈于, 以角解析光電子能譜術探討新穎拓樸材料晶體與電子結構之物理特性. 國立成功大學, 2018. 博士 thesis.
[34] 富智科技股份有限公司, 掃瞄式探針顯微鏡(SPM)儀器簡介與新技術. 日本精工奈米科技有限公司.
[35] 彭鈺瑋, 利用分子束磊晶系統成長反鐵磁拓撲絕緣體MnBi2Te4 單晶薄膜及其物理特性研究. 國立成功大學碩士論文, 2020.
[36] 黃振昌, Surface Analysis lnstrument : X-ray Photoelectron Spectrometer. 國家實驗研究院儀器科技研究中心, 1998: p. 5-6.
[37] 董弈, 調控多元鉍化硒合金拓樸絕緣體其電子結構, 傳輸及磁性研究. 成功大學物理學系學位論文, 2007.
[38] 劉昱宏, 利用分子束磊晶成長拓樸絕緣體鉍化硒參雜銻薄膜之特性分析與場效之研究應用. 成功大學物理學系學位論文, 2017.
[39] 潘詩晴, X 射線光電子能譜學 X-ray photoelectron spectroscopy XPS. 逢甲大學學生報告, 2018. 材料科學與工程學系.
[40] 蔡明潔, 磊晶反鐵磁拓樸絕緣體 MnBi2Te4 薄膜之結構與磁性電性研究. 國立成功大學, 2020.
[41] 蔡增光、林文智、卓恩宗, X 光反射率在奈米半導體製程的新應用 科儀新知, 2002. 第二十四卷第三期: p. 52-57.
[42] 戴鳳純, 磁性拓樸絕緣體MnSb_2 Te_4 與Mn(BixSb1-x)2Te4 薄膜磊晶及其物理特性分析. 國立成功大學, 2022.