簡易檢索 / 詳目顯示

研究生: 柯翰宇
Ko, Han-Yu
論文名稱: SlSWEET 醣轉運蛋白對番茄果實及種子發育重要性
The importance of SlSWEET transporters in fruit and seed development in tomato
指導教授: 郭瑋君
GUO, WOEI-JIUN
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技與產業科學系
Department of Biotechnology and Bioindustry Sciences
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 103
中文關鍵詞: SWEET醣轉運蛋白番茄果實發育及種子充實
外文關鍵詞: SWEET, sugar transporter, Solanum lycopersicum, fruit development and seed filling
相關次數: 點閱:97下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 醣類在植物生長中為主要的能量來源,供給植物器官發育,包含果實。番茄為世界經濟作物之一,然而其果實的醣類供給機制了解甚少。近年研究指出SWEETs醣轉運蛋白活性調控胚乳的充實度、種子的發育,很可能對果實發育扮演關鍵角色,值得探究。當分析所有SWEETs在不同生長階段番茄果實的表現量,發現屬於Clade III的SlSWEET12c在果實發育第35天以及 SlSWEET15在果實發育第21天分別具有極高度表現。酵母菌互補生長分析及碳-14同位素追蹤實驗結果得知SlSWEET12c對於蔗糖有微弱卻專一性的運輸能力。觀察分別表現SlSWEET12c/15-GFP綠螢光融合蛋白得知兩者皆表現在酵母菌及植物的液胞內,顯示其功能可能與液胞醣累積有關。分析SlSWEET12c/15-GUS融合蛋白轉植株則發現SlSWEET12c/15蛋白大量累積在種子外皮,同時可能些微表現於果肉及其維管束。為了確認其生理功能,利用CRISPR/Cas 9分別建立SlSWEET12c/15單突變株,我們發現slsweet15突變會抑制果實及種子發育與充實,這些結果顯示SlSWEET15為種子充實重要機制,其功能可能為位於液胞膜上調控種子的蔗糖供給以利果實充實。

    Sugar is an important energy source during plant development and serve as nutrients to organ development, including fruits. Tomato is an important economic fruit crop in the world, yet the mechanism of sugar supply in fruits is still unclear. Studies indicate that SWEET (Sugars Will Eventually be Exported Transporters) sugar transporters regulated seed filling in Arabidopsis, and may involve in development of tomato fruits. Here, by using quantitative PCR, we have discovered that SlSWEET12c was specifically highly expressed in 35-day-old fruits, and SlSWEET15 was highly expressed 21-day-old fruits. Yeast complementation growth assay and radio-tracer uptake assay suggested that SlSWEET12c exhibited weak but specific transport activity to sucrose. Localization of SlSWEET12c/15-GFP in yeast and plant cell vacuoles suggested their putative functions in vacuolar sugar accumulation. Tissue-specific expression of SlSWEET12c/15-GUS fusion proteins were observed in transgenic tomato plants. We discovered that SlSWEET12c/15 proteins were mainly accumulated in seed coat and less in flesh and vascular bundle. To confirm its physiological function, knockout mutant lines using CRISPR/cas9 system were generated. We found that in slsweet15 mutant, fruits development and seed filling were inhibited. These results imply that SlSWEET15 may function at vacuolar membrane to regulate sucrose in seeds and supply for fruits development.

    目錄 中文摘要 I 英文摘要 II 誌謝 VI 目錄 VII 表目錄 XII 圖目錄 XIII 附圖目錄 XV 縮寫表 XVI 一、研究背景 1 1-1 醣類對於果實發育的重要性 (The importance of sugars in fruits development) 1 1-2 醣類於植物體內運輸 (The mechanism of sugar transport in plants) 2 1-3 醣轉運蛋白於番茄果實研究 (Researches about sugar transporters on tomato fruits) 4 1-4 SWEET醣轉運蛋白及其在農作物中的功能 (SWEET sugar transporters and their functions in crops) 5 1-5 研究目的 (Aims) 7 二、材料與方法 8 2-1 植物材料與栽種方法 (Plant materials and cultivation method) 8 2-2 RNA萃取與反轉錄 (RNA extraction and reverse transcription) 10 2-3 及時定量計聚合酶連鎖反應 (Real-time quantitative polymerase chain reaction) 12 2-4 酵母菌轉型 (Yeast transformation) 12 2-5 酵母菌互補生長分析 (Yeast complementation growth assay) 16 2-6 SlSWEET12c/15生化特性分析 (The biochemical features of SlSWEET12c/15) 19 2-7 原生質體分離與轉型 (Protoplast isolation and transformation) 20 2-8 GUS 報導基因分析 (GUS reporter gene system) 23 2-9 GUS瞬時表達測試 (GUS transient expression assay) 25 2-10 Genomic DNA萃取 (Genomic DNA extraction) 26 2-11 果實醣類萃取 (Sugar extraction from fruits) 27 2-12 GC-MS分析醣類組成 (Sugar composition analysis by Gas chromatography-mass spectrometry) 28 2-13 以CRISPR/Cas9系統建立SlSWEET12c及SlSWEET15 單突變株 (Establishment of SlSWEET12c and SlSWEET15 single mutant line by CRISPR/Cas9 system) 29 2-14 SlSWEET15過表達質體建構與轉殖株建立 (SlSWEET15 overexpression construction and establishment of transgenic plant) 32 2-15 共軛焦螢光顯微鏡觀察 (Confocal microscopy for GFP observation) 33 2-16 聚合酶鏈鎖反應 (PCR, Polymerase chain reaction) 33 2-17 DNA膠體電泳 (DNA gel electrophoresis analysis) 34 2-18 DNA 純化 (DNA purification) 34 2-19 質體構築 (Plasmid construction) 34 三、結果 37 3-1 SlSWEETs在番茄植株中的基因表現量 (Expression of SlSWEETs in tomato plants) 37 3-2 SlSWEET12c及SlSWEET15轉運蔗糖能力 (Sucrose transport activity of SlSWEET12c and SlSWEET15) 37 3-3 SlSWEET12c及SlSWEET15在細胞內蛋白表現位置 (Subcellular localization of SlSWEET12c and SlSWEET15) 40 3-4 SlSWEET12c及SlSWEET15在番茄植物組織器官中的 蛋白表現位置 (Tissue-specific expression of SlSWEET12c and SlSWEET15 in tomato plants) 42 3-5 建立SlSWEET12c及SlSWEET15單突變株分析其對於 果實發育的功能 (Establishment of SlSWEET12c and SlSWEET15 single mutant line to analyze their function in fruit development) 44 3-6 建立SlSWEET15過表現轉殖植物 (Establishment of SlSWEET15 overexpression transgenic plant) 48 四、討論 50 4-1 SlSWEETs在番茄果實發育扮演重要角色 (SlSWEETs play an important role in tomato fruit development) 50 4-2 SlSWEET12c及SlSWEET15對醣類轉運的專一性 (SlSWEET12c and SlSWEET15 may function in transport sucrose) 50 4-3 SlSWEET12c及SlSWEET15可能為同時表現於細胞膜與 液胞膜上的醣轉運蛋白 (SlSWEET12c and SlSWEET15 sugar transporter may express on both plasma membrane and tonoplast membrane) 51 4-4 SlSWEETs於番茄果實及種子發育的生理功能 (SlSWEETs are involved in fruit development and seed filling) 52 4-5 結論 (Conlusion) 54 參考文獻 56 圖表 64 附錄 92 表目錄 表一、 用於質體構築引子序列 65 表二、 及時定量計聚合酶連鎖反應 (qRT-PCR) 所使用引子 67 圖目錄 圖一、 SlSWEETs於番茄植物中不同器官的基因表現量 68 圖二、 酵母菌互補生長分析測試SlSWEET12c及SlSWEET15的 蔗糖轉運能力 (重複1) 69 圖三、 互補生長分析SlSWEET12c及SlSWEET15的蔗糖轉運 能力 (重複2) 70 圖四、 互補生長分析SlSWEET12c及SlSWEET15的蔗糖轉運 能力 (重複3) 71 圖五、 互補生長分析SlSWEET12c及SlSWEET15的蔗糖轉運 能力 (重複4) 72 圖六、 互補生長分析SlSWEET12c及SlSWEET15的蔗糖轉運 能力 73 圖七、 SlSWEET12c與SlSWEET15於酵母菌的轉運生化特性 分析 74 圖八、 SlSWEETs於酵母菌細胞的表現位置 75 圖九、 SlSWEET12c於植物細胞內表現位置 76 圖十、 SlSWEET15於植物細胞內表現位置 77 圖十一、 瞬時表達SlSWEET-GUS複合蛋白於番茄植物 78 圖十二、 SlSWEET12c蛋白於番茄組織的專一性表達 79 圖十三、 SlSWEET15蛋白於番茄組織的專一性表達 80 圖十四、 以CRISPR/Cas9 系統使slsweet12c突變 81 圖十五、 以CRISPR/Cas9 系統使slsweet15突變 82 圖十六、 標的片段於SlSWEET12c/15 genomic DNA的位置 83 圖十七、 確認CRIPSR轉殖株SlSWEET12c 外顯子片段 84 圖十八、 SlSWEET12c-Cas9轉殖株定序結果 85 圖十九、 確認CRIPSR轉殖株SlSWEET15 外顯子片段 86 圖二十、 SlSWEET15-Cas9轉殖株定序結果 87 圖二十一、 slsweet15突變株的性狀 88 圖二十二、 SlSWEET15基因剔除抑制種子成熟與產量 89 圖二十三、 培養番茄突變種子於生長培養基 90 圖二十四、 蔗糖藉由SlSWEET12c及SlSWEET15從韌皮部運輸入 番茄果實及種子的模型 91 附圖目錄 附圖一、 SlSWEETs於不同階段番茄果實的基因表現量 93 附圖二、 構築酵母菌互補生長分析所使用之質體 94 附圖三、 進行酵母菌互補生長分析所使用之表現載體 95 附圖四、 構築SlSWEETs-GFP複合蛋白於酵母菌及植物細胞之 質體 96 附圖五、 觀察SlSWEETs-GFP複合蛋白於酵母菌細胞之表現質體 97 附圖六、 觀察SlSWEETs-GFP複合蛋白於植物細胞之表現質體 98 附圖七、 瞬時表達GUS蛋白之表現質體 99 附圖八、 建立轉殖株以表現SlSWEETs-GUS複合蛋白所使用之 表現質體 100 附圖九、 藉由CRISPR/Cas9系統建立轉殖株所使用之質體片段 101 附圖十、 藉由CRISPR/Cas9系統建立轉殖株所使用之表現質體 102 附圖十一、用於建立過表達轉殖株所使用之表現質體 103

    參考文獻
    何俐萱,探討番茄 SlSWEETs 轉運蛋白對於器官中醣類的分配以及抗青枯病機制中所扮演的角色,國立成功大學熱帶植物科學研究所碩士論文,2017。

    Brooks, C., Nekrasov, V., Lippman, Z. B. and Van Eck, J. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiology 166, 1292-1297, 2014.

    Cao, S., Yang, Z. and Zheng, Y. Sugar metabolism in relation to chilling tolerance of loquat fruit. Food Chemistry 136, 139-143, 2013.

    Chen, L. Q. SWEET sugar transporters for phloem transport and pathogen nutrition. New Phytologist 201, 1150-1155, 2014.

    Chen, L. Q., Hou, B. H., Lalonde, S., Takanaga, H., Hartung, M. L., Qu, X. Q., Guo, W. J., Kim, J. G., Underwood, W., Chaudhuri, B., Chermak, D., Antony, G., White, F. F., Somerville, S. C., Mudgett, M. B. and Frommer, W. B. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468, 527-532, 2010.

    Chen, L. Q., Lin, I. W., Qu, X. Q., Sosso, D., McFarlane, H. E., Londoño, A., Samuels, A. L. and Frommer, W. B. A cascade of sequentially expressed sucrose transporters in the seed coat and endosperm provides nutrition for the Arabidopsis embryo. The Plant Cell 27, 607-619, 2015.

    Chen, L. Q., Qu, X. Q., Hou, B. H., Sosso, D., Osorio, S., Fernie, A. R. and Frommer, W. B. Sucrose Efflux Mediated by SWEET Proteins as a Key Step for Phloem Transport. Science 335, 207-211, 2012.

    Cheng, R., Cheng, Y., Lü, J., Chen, J., Wang, Y., Zhang, S. and Zhang, H. The gene PbTMT4 from pear (Pyrus bretschneideri) mediates vacuolar sugar transport and strongly affects sugar accumulation in fruit. Physiologia Plantarum 164, 307-319, 2018.

    Curtis, M. D. and Grossniklaus, U. A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiology 133, 462-469, 2003.

    Dai, Z., Wu, H., Baldazzi, V., van Leeuwen, C., Bertin, N., Gautier, H., Wu, B., Duchêne, E., Gomès, E., Delrot, S., Lescourret, F. and Génard, M. Inter-Species Comparative Analysis of Components of Soluble Sugar Concentration in Fleshy Fruits. Frontiers in Plant Science 7, 649, 2016.

    Davies, J. W. and Cocking, E. C. Changes in carbohydrates, proteins and nucleic acids during cellular development in tomato fruit locule tissue. Planta 67, 242-253, 1965.

    de Haro, L. A., Arellano, S. M., Novák, O., Feil, R., Dumón, A. D., Mattio, M. F., Tarkowská, D., Llauger, G., Strnad, M., Lunn, J. E., Pearce, S., Figueroa, C. M. and Del Vas, M. Mal de Río Cuarto virus infection causes hormone imbalance and sugar accumulation in wheat leaves. BioMed Central Plant Biology 19, 112, 2019.

    Dinant, S. and Lemoine, R. The phloem pathway: New issues and old debates. Comptes Rendus Biologies 333, 307-319, 2010.

    Emr, S. D., Schekman, R., Flessel, M. C. and Thorner, J. An MF alpha 1-SUC2 (alpha-factor-invertase) gene fusion for study of protein localization and gene expression in yeast. Proceedings of the National Academy of Sciences of the United States of America 80, 7080-7084, 1983.

    Feng, C. Y., Han, J. X., Han, X. X. and Jiang, J. Genome-wide identification, phylogeny, and expression analysis of the SWEET gene family in tomato. Gene 573, 261-272, 2015.

    Gaj, T., Gersbach, C. A. and Barbas, C. F., 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology 31, 397-405, 2013.

    Gietz, R. D. and Schiestl, R. H. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nature Protocols 2, 31-34, 2007.

    Guo, W. J., Nagy, R., Chen, H. Y., Pfrunder, S., Yu, Y. C., Santelia, D., Frommer, W. B. and Martinoia, E. SWEET17, a facilitative transporter, mediates fructose transport across the tonoplast of Arabidopsis roots and leaves. Plant Physiology 164, 777-789, 2014.

    Höfgen, R. and Willmitzer, L. Storage of competent cells for Agrobacterium transformation. Nucleic Acids Research 16, 9877, 1988.

    Hackel, A., Schauer, N., Carrari, F., Fernie, A. R., Grimm, B. and Kühn, C. Sucrose transporter LeSUT1 and LeSUT2 inhibition affects tomato fruit development in different ways. The Plant Journal 45, 180-192, 2006.

    Ho, L. H., Klemens, P. A. W., Neuhaus, H. E., Ko, H. Y., Hsieh, S. Y. and Guo, W. J. SlSWEET1a is involved in glucose import to young leaves in tomato plants. Journal of Experimental Botany 70, 3241-3254, 2019.

    Horvath, P. and Barrangou, R. CRISPR/Cas, the Immune System of Bacteria and Archaea. Science 327, 167-170, 2010.

    Karimi, M., Depicker, A. and Hilson, P. Recombinational Cloning with Plant Gateway Vectors. Plant Physiology 145, 1144-1154, 2007.

    Kiba, T., Takebayashi, Y., Kojima, M. and Sakakibara, H. Sugar-induced de novo cytokinin biosynthesis contributes to Arabidopsis growth under elevated CO2. Scientific Reports 9, 7765, 2019.

    Klee, H. J. and Giovannoni, J. J. Genetics and Control of Tomato Fruit Ripening and Quality Attributes. Annual Review of Genetics 45, 41-59, 2011.

    Koch, K. E. Carbohydrate-Modulated Gene Expression in Plants. Annual Review of Plant Physiology and Plant Molecular Biology 47, 509-540, 1996.

    Lee, L. Y. and Gelvin, S. B. T-DNA binary vectors and systems. Plant Physiology 146, 325-332, 2008.

    Li, D., Mou, W., Wang, Y., Li, L., Mao, L., Ying, T. and Luo, Z. Exogenous sucrose treatment accelerates postharvest tomato fruit ripening through the influence on its metabolism and enhancing ethylene biosynthesis and signaling. Acta Physiologiae Plantarum 38, 225, 2016.

    Li, Y., Wang, H., Zhang, Y. and Martin, C. Can the world's favorite fruit, tomato, provide an effective biosynthetic chassis for high-value metabolites? Plant Cell Reports 37, 1443-1450, 2018.

    Liu, X., Zhang, Y., Yang, C., Tian, Z. and Li, J. AtSWEET4, a hexose facilitator, mediates sugar transport to axial sinks and affects plant development. Scientific Reports 6, 24563, 2016.

    McCaskill, A. and Turgeon, R. Phloem loading in Verbascum phoeniceum L. depends on the synthesis of raffinose-family oligosaccharides. Proceedings of the National Academy of Sciences of the United States of America 104, 19619-19624, 2007.

    McCurdy, D. W., Dibley, S., Cahyanegara, R., Martin, A. and Patrick, J. W. Functional Characterization and RNAi-Mediated Suppression Reveals Roles for Hexose Transporters in Sugar Accumulation by Tomato Fruit. Molecular Plant 3, 1049-1063, 2010.

    Nelson, B. K., Cai, X. and Nebenführ, A. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. The Plant Journal 51, 1126-1136, 2007.

    Öner-Sieben, S., Rappl, C., Sauer, N., Stadler, R. and Lohaus, G. Characterization, localization, and seasonal changes of the sucrose transporter FeSUT1 in the phloem of Fraxinus excelsior. Journal of Experimental Botany 66, 4807-4819, 2015.

    Peixoto, J. V. M., Neto, C. M., Campos, L. F. C., Dourado, W. de S., Nogueira, A. P. O. and Nascimento, A. dos R. Industrial tomato lines: morphological properties and productivity. Genetic Molecular Research 16, 16029540, 2017.

    Preuss, D., Mulholland, J., Kaiser, C. A., Orlean, P., Albright, C., Rose, M. D., Robbins, P. W. and Botstein, D. Structure of the yeast endoplasmic reticulum: Localization of ER proteins using immunofluorescence and immunoelectron microscopy. Yeast 7, 891-911, 1991.

    Rennie, E. A. and Turgeon, R. A comprehensive picture of phloem loading strategies. Proceedings of the National Academy of Sciences of the United States of America 106, 14162-14167, 2009.

    Reuscher, S., Akiyama, M., Yasuda, T., Makino, H., Aoki, K., Shibata, D. and Shiratake, K. The Sugar Transporter Inventory of Tomato: Genome-Wide Identification and Expression Analysis. Plant and Cell Physiology 55, 1123-1141, 2014.

    Rolland, F., Baena-Gonzalez, E. and Sheen, J. Sugar Sensing and Signaling in Plants: Conserved and Novel Mechanisms. Annual Review of Plant Biology 57, 675-709, 2006.

    Schaffer, A. A. and Petreikov, M. Sucrose-to-Starch Metabolism in Tomato Fruit Undergoing Transient Starch Accumulation. Plant Physiology 113, 739-746, 1997.

    Scofield, G. N., Hirose, T., Gaudron, J. A., Furbank, R. T., Upadhyaya, N. M. and Ohsugi, R. Antisense suppression of the rice transporter gene, OsSUT1, leads to impaired grain filling and germination but does not affect photosynthesis. Functional Plant Biology 29, 815-826, 2002.

    Segal, D. J. Bacteria herald a new era of gene editing. eLife 2, e00563, 2013.

    Shammai, A., Petreikov, M., Yeselson, Y., Faigenboim, A., Moy-Komemi, M., Cohen, S., Cohen, D., Besaulov, E., Efrati, A., Houminer, N., Bar, M., Ast, T., Schuldiner, M., Klemens, P. A. W., Neuhaus, E., Baxter, C. J., Rickett, D., Bonnet, J., White, R., Giovannoni, J. J., Levin, I. and Schaffer, A. Natural genetic variation for expression of a SWEET transporter among wild species of Solanum lycopersicum (tomato) determines the hexose composition of ripening tomato fruit. The Plant Journal 96, 343-357, 2018.

    Smeekens, S., Ma, J., Hanson, J. and Rolland, F. Sugar signals and molecular networks controlling plant growth. Current Opinion in Plant Biology 13, 273-278, 2010.

    Sosso, D., Luo, D., Li, Q. B., Sasse, J., Yang, J., Gendrot, G., Suzuki, M., Koch, K. E., McCarty, D. R., Chourey, P. S., Rogowsky, P. M., Ross-Ibarra, J., Yang, B. and Frommer, W. B. Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport. Nature Genetics 47, 1489-1493, 2015.

    Stevens, M. Inheritance of Tomato Fruit Quality Components. Plant Breeding Reviews 4, 273-311, 2011.

    Sze, H., Li, X. and Palmgren, M. G. Energization of Plant Cell Membranes by H+-Pumping ATPases: Regulation and Biosynthesis. The Plant Cell 11, 677, 1999.

    Van Bel, A. J. E. The phloem, a miracle of ingenuity. Plant, Cell and Environment 26, 125-149, 2003.

    Wang, L. F., Qi, X. X., Huang, X. S., Xu, L. L., Jin, C., Wu, J. and Zhang, S. L. Overexpression of sucrose transporter gene PbSUT2 from Pyrus bretschneideri, enhances sucrose content in Solanum lycopersicum fruit. Plant Physiology and Biochemistry 105, 150-161, 2016.

    Wang, S., Yokosho, K., Guo, R., Whelan, J., Ruan, Y. L., Ma, J. F. and Shou, H. The soybean sugar transporter GmSWEET15 mediates sucrose export from endosperm to early embryo. Plant Physiology 180, 641, 2019.
    Wijayanto, T. and McHughen, A. Genetic transformation of Linum by particle bombardment. In Vitro Cellular and Developmental Biology - Plant 35, 456-465, 1999.

    Wu, F. H., Shen, S. C., Lee, L. Y., Lee, S. H., Chan, M. T. and Lin, C. S. Tape-Arabidopsis Sandwich - a simpler Arabidopsis protoplast isolation method. Plant Methods 5, 16, 2009.

    Xing, H. L., Dong, L., Wang, Z. P., Zhang, H. Y., Han, C. Y., Liu, B., Wang, X. C. and Chen, Q. J. A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BioMed Central Plant Biology 14, 327, 2014.

    Xuan, Y. H., Hu, Y. B., Chen, L. Q., Sosso, D., Ducat, D. C., Hou, B. H. and Frommer, W. B. Functional role of oligomerization for bacterial and plant SWEET sugar transporter family. Proceedings of the National Academy of Sciences of the United States of America 110, E3685-E3694, 2013.

    Yang, J., Luo, D., Yang, B., Frommer, W. B. and Eom, J.-S. SWEET11 and 15 as key players in seed filling in rice. New Phytologist 218, 604-615, 2018.

    Yin, Y. G., Kobayashi, Y., Sanuki, A., Kondo, S., Fukuda, N., Ezura, H., Sugaya, S. and Matsukura, C. Salinity induces carbohydrate accumulation and sugar-regulated starch biosynthetic genes in tomato (Solanum lycopersicum L. cv. 'Micro-Tom') fruits in an ABA- and osmotic stress-independent manner. Journal of Experimental Botany 61, 563-574, 2010.

    Yuan, Y., Mei, L., Wu, M., Wei, W., Shan, W., Gong, Z., Zhang, Q., Yang, F., Yan, F., Zhang, Q., Luo, Y., Xu, X., Zhang, W., Miao, M., Lu, W., Li, Z. and Deng, W. SlARF10, an auxin response factor, is involved in chlorophyll and sugar accumulation during tomato fruit development. Journal of Experimental Botany 69, 5507-5518, 2018.

    Zhang, L., Zhang, Z., Lin, S., Zheng, T. and Yang, X. Evaluation of Six Methods for Extraction of Total RNA from Loquat. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 41, 313-316, 2013.
    Zhang, Z., Zou, L., Ren, C., Ren, F., Wang, Y., Fan, P., Li, S. and Liang, Z. VvSWEET10 Mediates Sugar Accumulation in Grapes. Genes 10, 255, 2019.

    無法下載圖示 校內:2021-12-02公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE