| 研究生: |
張智偉 Chang, Chih-Wei |
|---|---|
| 論文名稱: |
高比表面積高alpha相含量之氮化矽粉體製程技術開發與反應機構探討 Process Development and Reaction Mechanism of High Specific Surface Area and High Alpha-Phase Content Si3N4 Powder |
| 指導教授: |
鍾賢龍
Chung, Shyan-Lung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 氮化矽 、熱碳還原氮化法 、燃燒合成法 |
| 外文關鍵詞: | Si3N4, Carbothermal reduction and nitridation synthesis, combustion synthesis |
| 相關次數: | 點閱:83 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究是以燃燒合成技術及以溶液燃燒合成法結合熱碳還原氮化反應的方式探討各項實驗變數對氮化矽合成反應的影響。當以外覆引燃劑的方式進行燃燒合成反應時,由於鹵化氫、金屬鈉及引燃劑的相互作用,使得α相的氮化矽產物能在低氮壓下(≤ 5atm)成功的被合成。其中,鹵化銨與疊氮化鈉的作用為類似催化劑的角色,而引燃劑的主要功用是能在極短的時間內提供反應所需的高溫,且其反應後所形成的陶瓷層亦具有延長氣相反應物散失的功效,故能促進其整體的反應性。
在以溶液燃燒合成法進行氮化矽粉體新製程技術的開發中,藉由適當燃料的選擇與碳源(蔗糖)的添加,可獲得具有較高比表面積的反應前趨物粉體;而當氮化反應於1425-1450℃下進行操作時,藉由C/SiO2比例的不同除可控制Si3N4或SiC粉體的生成外亦可影響氮化矽α相的含量,當C/SiO2的比例大於2.0以上時(於1425℃下進行反應),產物中即可檢測出氮化矽粉體的生成(>2小時),而當C/SiO2的比例大於2.8以後,即因過多殘碳的存在而妨礙了氮化反應的進行,進而發生反應性降低的現象;而當C/SiO2的比例大於4.4時(於1450℃下進行反應),產物中除有Si3N4粉體的生成外亦可檢測出SiC的存在。經本製程方法所獲得之氮化矽產物,隨著操作溫度與C/SiO2比例的不同,其轉化率約為80 %而α相含量約在90 wt%之間。
A combustion synthesis method for the synthesis of α- Si3N4 from a reactant compact composed of Si, NaN3 and NH4X and wrapped up with an igniting agent was investigated. Wrapping the reactant compact with the igniting agent (i.e., a mixture of Ti and C powders) was found necessary for the synthesis of Si3N4. In addition to NH4Cl, other ammonium halides (i.e., NH4F, NH4Br and NH4I) were found to be capable of catalyzing the synthesis reaction and NaN3 was considered to exert an essential effect on the combustion synthesis reaction other than functioning as a solid state nitrogen source. It was proposed that Na vapor produced by decomposition of NaN3 reduces SiXX (formed by reaction of Si and NH4X), promoting the nitridation reaction to form Si3N4.
Carbothermal reduction and nitridation synthesis of Si3N4 was also investigated by using precursor powders prepared by a solution combustion synthesis method. Glycine or urea (fuel), ammonium nitrate (oxidizer), silicic acid (Si source) and sucrose (major carbon source) were dissolved completely in water. This solution was dried and then heated to undergo the solution combustion synthesis reaction, resulting in a homogeneous mixture of nano sized carbon and SiO2 particles, which possessed with high specific surface areas and could be used as the precursor powder for the carbothermal reduction and nitridation synthesis of Si3N4. When the carbothermal reduction and nitridation reaction was carried out at 1425-1450℃ for 4hr, formation of Si3N4 can be detected only when the C/SiO2 weight ratio is greater than ~ 2.0. The Si3N4 yield increases rapidly as the C/SiO2 weight ratio is increased from ~ 2.0 to 2.8 and decreases with further increase in the C/SiO2 ratio. The α phase content increases with increasing C/SiO2 weight ratio and decreases with increasing temperature. Depending on the C/SiO2 ratio, a Si3N4 yield of ~ 80 % and an α phase content of ~ 90 wt% could be obtained.
1.G. Ziegler, J.Heinrich, G.Wotting, J.Mat.Sci., 22,3041-3086 (1987).
2.L. F. Riley, J. Am. Ceram. Soc. 83, 245 (2000).
3.S.Wild, P.Grieveson, and K.H.Jack,385–395 in Special Ceramics, Vol.5. Edited by P.Popper. British Ceramic Research Association, Stoke-on-Trent, U.K. (1972).
4.周永祥,周更生, 陶業pp.727-735 (1986)
5.阿部弘,川合實,管野隆志,鈴木惠一朗, pp.26-32
6.C. Methivier, J. Massardier, J.C. Bertolini, Applied Catalysis A: General 182, 337 (1999).
7.M. M. Schwartz, “Powder”, in “Handbook of Structural Ceramics ”, 4, 43 (1992).
8.A. J.Moulson, J. Mater. Sci., 14, 1017 (1979).
9.W.C. Lee and S.L. Chung, J. Mater. Res. 12, 805 (1997).
10.H. K.Sander,”High-tech Ceramics”, C&E News, July 9 (1984).
11.J. F. Crider, Ceram. Eng. Sci.Proc.,3[9-10]:519 (1982).
12.A.G. Merzhanov, In Combustion and Plasma Synthesis of High-Temperature Materials,edited by Z.A.Munir and J. B. Holt, New York,USA, pp.1-53. (1990)
13.Z. A. Munir, Ceram. Bull.,67 [2] ,pp.342-349 (1988).
14.J. Subrahmanyam, M. Vijayakumar, J. Mater. Sci., 27, 6249-6273 (1992).
15.Z. Yue, L. Li, J. Zhou, Materials Science and Engineering B 64 p68 (1999)
16.L. A. Chick, L. R. Pederson, Materials Letters 10 p6 (1990)
17.A. S. Mukasyan, C. Costello, 25 p117 (2001)
18.K. C. Patila, S.T. Arunab, and T. Mimania, Current Opinion in Solid State and Materials Science 6, 507 (2002).
19.W. C. Lee and S. L. Chung, J. Mater. Res. 12, 805 (1997).
20.A. Hendry and K. H. Jack, In Special Ceramics (edited by P. Popper). P.199 Br.Cer. Res. Assoc., Stoke on Trent (1975).
21.S. A. Badrak, T. S. Bartnitskaya, and I. M. Baryshevskay, et al., Porohk. Metall., 9, 66 (1981).
22.V. Fiqusch and T. Licko, P.157 in high tech ceramics. Ed ited by P.Vincenzini. Elsevier, Amsterdam, The Netherlands (1987).
23.S. J. P. Durham, K. Shanker, and R. A. L. Drew, J. Am. Ceram. Soc., 74(1), 31 (1991).
24.M. Ekelund, and B. Forslund, J. Am. Ceram. Soc., 75(3), 532-539 (1991).
25.K. Komeya and H. Inoue, J. Mater. Sci.Lett., 10, 1243 (1975).
26.F. Lencart-Silva, and J. M. Vieira, J. Eur. Ceram. Soc., 18, 1471-1477 (1998).
27.A. W. Weimer, A. E. Glenn, W. S. David, R. B. Donald, W. M. Jeffrey, J. Am. Ceram. Soc., 80(11), 2853 (1997).
28.B. Kumar, and M. M. Godkhindi, J. Mater. Sci. Lett., 15, 403-405 (1996).
29.S. J. P. Durham, K. Shanker, and R. A. L. Drew, P.313 in ceramic powder processing science. Edited by H. hausner, G. Messing, and S. Hirano. Deutsche Keramische Gesellschaft, Koln, FRG (1989).
30.S. J. P. Durham, K. Shanker, and R. A. L. Drew, Can. Metall. Q., 30(1), 39-43 (1991).
31.S. C. Zhang, , W. R. Cannon, J. Amer. Ceram. Soc., 67(10), 691 (1984).
32.B. D. Cullite (1978) Elements of X-ray diffraction. Addison-Wesley, London
33.C. Real , M.D. Alcala , J.M. Criad, J Am Ceram Soc 87:75 (2004)
34.G. Shim, J. S. Park, and S.W. Cho, J. Mater. Res. 21, 747 (2006).
35.K. L. Steffens and M. R. Zachariah: Optical and modeling studies of sodium/halide reactions for the formation of titanium and boron nanoparticles.
36.M. D. Lima , R. Bonadimann , M. J. d. Andrade , J. C. Toniolo, Bergmann CP J Eur Ceram Soc 26:1213 (2006)
37.S. C. Zhang , W. R. Cannon, J Am Ceram Soc 67:691 (1984)
38.R. Koc , S. J. Kaza, Eur Ceram Soc 18:1471 (1998)
39.M. V. Vlasova , T. S. Bartnitskaya , L. L. Sukhikh , L. A. Krushinskaya, T. V. Tomila , S. Y. Artyuch, J Mater Sci 30:5263 (1997)