| 研究生: |
湯凱文 Tang, Kai-wen |
|---|---|
| 論文名稱: |
脈衝電鍍銅的橫截面微結構及其特性 Characterization of the Cross-section Microstructure of Pulse Electroplaing Cu |
| 指導教授: |
郭瑞昭
Kuo, Jui-chao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 柱狀晶 、EBSD 、脈衝電鍍 、雙晶 |
| 外文關鍵詞: | columnar grain, pulse electrodepotion, EBSD, twin |
| 相關次數: | 點閱:79 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著電子產品不斷朝著輕薄短小的方向發展,早期積體電路片(chip,又稱為晶片)內部導線所使用的鋁材已不敷使用,由於鋁材料尺寸小於1μm時,它的RC值將會明顯增加,使得更小尺寸的晶片之效能與發展受制於內部導線。銅導線製程因此被開發出來,取代了原先的鋁導線。甚至研發出多層次晶片的製程,使得小尺寸晶片的效能大幅提昇。而多層次晶片之間如果能直接以銅導線做為支撐,則不會有散熱不易以及增加多餘重量與成本的問題。
但是銅與其他高導電金屬同樣有著強度過低的問題。雖然有許多強化機制(strengthening mechanisms)可以提高金屬的強度,但同時卻也大幅增加對電子的散射,而使導電率降低。然而利用脈衝電鍍法(Pulse Electrodeposition)可以製備出有高密度奈米雙晶(twin)的純銅試片,同時具有超高強度和高導電性。
本實驗固定脈衝電鍍的脈衝頻率,改變電流密度,再利用背向電子散射繞射(Electron Back-Scatter Diffraction,EBSD)和XRD分析,觀察以不同電流密度所製備出的銅鍍層,比較各試片之間的晶粒尺寸與雙晶密度。實驗中並成功以EBSD分析未經研磨拋光處理的銅鍍層表面形貌(morphology)的OIM(Orientation Image Mapping),以及從橫截面觀察銅鍍層的晶粒形狀與晶體方向。另外發現電流密度的增加並沒有如預期中地讓鍍層表面的平均晶粒尺寸變小;電流密度的增加也沒有對雙晶的生成有規律性的影響。而鍍層的優選方位在鍍層表面有集中於(111)及(101)方向的趨勢。橫截面的晶粒形狀與晶體方向,大多都是朝著幾個方向成長的大型柱狀晶。
The performance of aluminum interconnection in chips was not enough because of those electronics products getting thinner and smaller. The efficiency and development will be limited through interconnections. when the size of aluminum inter connects are smaller than 1μm, its RC value will increase obviously. Copper interconnect was developed for replacing aluminum. To raise the performance of small chip, multi-layer chips process has been developed. The problems of heat dissapitation, weight and cost addition will be solved if multi-level chips could use copper wires to support one another directly.
Like other high conductivity metals, the strength is not enough in copper’s composition. Even strengthening mechanisms can increase the strength of metal, it will violently increase electron scatter causing the poor conductivity. Using pulse electrodepositions can produce high nanometer twin pure copper samples which comprise high strength and high conductivity.
In this study, we modified the current density of PED, analyzed samples by EBSD and XRD, then observed the film of copper samples which prepared through different current densities, and compared each sample’s grain size and twin density. In addition, this study successfully analyzed unpolished morphology OIM of the film of copper by EBSD, and observed the grain shape and orientation of the cross- sectional in copper films. Increasing the current density didn’t make the grain size in the surface of film become small like we have expected. Moreover, it didn’t make have any influences in common of twin density. The orientation on film surface concentrated toward direction 111 and 101. Most of grain size and orientation of cross-section developed huge columnar grains toward some specific directions.
1. M.T. Bohr, “Interconnect scaling-the real limiter to high performance ULSI,” Electron Devices Meeting, 1995., International, pp. 241-244.
2. S. Venkatesan, A.V. Gelatos, S. Hisra, B. Smith, R. Islam, J. Cope, B. Wilson, D. Tuttle, R. Cardwell, S. Anderson, M. Angyal, R. Bajaj, C. Capasso, P. Crabtree, S. Das, J. Farkas, S. Filipiak, B. Fiordalice, M. Freeman, P.V. Gilbert, M. Herrick, A. Jain, H. Kawasaki, C. King, J. Klein, T. Lii, K. Reid, T. Saaranen, C. Simpson, T. Sparks, P. Tsui, R. Venkatraman, D. Watts, E.J. Weitzman, R. Woodruff, I. Yang, N. Bhat, G. Hamilton, and Y. Yu, “A high performance 1.8 V, 0.20 μm CMOS technology with copper metallization,” Electron Devices Meeting, 1997. IEDM '97. Technical Digest., International, pp. 769-772.
3. C.W. Alan, C. Chin-Chang, and C.B. Brett, “Pulse Reverse Copper Electrodeposition in High Aspect Ratio Trenches and Vias,” Journal of the Electrochemical Society, vol. 145, no. 9, 1998, pp. 3070-3074.
4. E.J. Taylor, J.J. Sun, and M.E. Inman, “Charge modulated electrochemical deposition of copper for electronic interconnect applications,” Plating and Surface Finishing, vol. 87, no. 12, 2000, pp. 68-73.
5. S. Spiesshoefer, J. Patel, T. Lam, L. Cai, S. Polamreddy, R.F. Figueroa, S.L. Burkett, L. Schaper, R. Geil, and B. Rogers, “Copper electroplating to fill blind vias for three-dimensional integration,” AVS, pp. 1277-1282.
6. W.C. Tsai, C.C. Wan, and Y.Y. Wang, “Frequency effect of pulse plating on the uniformity of copper deposition in plated through holes,” Journal of the Electrochemical Society, vol. 150, no. 5, 2003, pp. C267-C272.
7. P.C. Andricacos, C. Uzoh, J.O. Dukovic, J. Horkans, and H. Deligianni, “Damascene Copper electroplating for chip interconnections,” IBM J. Res. Dev., vol. 42, no. 5, 1998, pp. 567-574.
8. Q. Jean-Marie, and et al., “Effects of direct and pulse current on copper electrodeposition through photoresist molds,” Journal of Micromechanics and Microengineering, vol. 10, no. 2, 2000, pp. 116.
9. C.H. Seah, S. Mridha, and L.H. Chan, “DC/pulse plating of copper for trench/via filling,” Journal of Materials Processing Technology, vol. 114, no. 3, 2001, pp. 233-239.
10. J. William D. Callister, Materials Science and Engineering: An Introduction , 6th Edition Wiley Text Books 2002.
11. L. Lu, Y.F. Shen, X.H. Chen, L.H. Qian, and K. Lu, “Ultrahigh strength and high electrical conductivity in copper,” Science, vol. 304, no. 5669, 2004, pp. 422-426.
12. D. McLean, Grain boundaries in metals, 1957
13. J.W. Christian, and S. Mahajan, “Deformation twinning,” Progress in Materials Science, vol. 39, no. 1-2, 1995, pp. 1-157.
14. C.J. Youngdahl, J.R. Weertman, R.C. Hugo, and H.H. Kung, “Deformation behavior in nanocrystalline copper,” Scripta Materialia, vol. 44, no. 8-9, 2001, pp. 1475-1478.
15. K.K.C. Marc Andre Meyers, Mechanical Behavior Of Materials, N.J. :Prentice Hall, 1998.
16. N.V. Mandich, “Pulse and pulse-reverse electroplating,” Metal Finishing, vol. 99, no. Supplement 1, 2001, pp. 374-379.
17. A. Bastos, S. Zaefferer, D. Raabe, and C. Schuh, “Characterization of the microstructure and texture of nanostructured electrodeposited NiCo using electron backscatter diffraction (EBSD),” Acta Materialia, vol. 54, no. 9, 2006, pp. 2451-2462.
18. H.L. B. Gaida, 王大倫 譯, 實用電鍍學, 徐氏基金會, 1980.
19. 胡啟章, 電化學原理與方法, 五南圖書出版公司, 2002.
20. F.L. Jean-Claude Puippe, Theory and Practice of Pulse Plating, 1986.
21. R.T.C. Choo, J.M. Toguri, A.M. El-Sherik, and U. Erb, “Mass transfer and electrocrystallization analyses of nanocrystalline nickel production by pulse plating,” Journal of Applied Electrochemistry, vol. 25, no. 4, 1995, pp. 384-403.
22. S. Glasstone, “Electrode potentials and the form of electrodeposited metals,” Transactions of the Faraday Society, vol. 31, 1935, pp. 1232 - 1237.
23. M.S. Milan Paunovic, Electrochemical Society, Fundamentals of Electrochemical Deposition, Wiley-Interscience, 1998.
24. J.O.M. Bockris, and M. Enyo, “Electrodeposition of Gallium on Liquid and Solid Gallium Electrodes in Alkaline Solutions,” Journal of the Electrochemical Society, vol. 109, no. 1, 1962, pp. 48-54.
25. J.O.M.B. E. Mattsson, “Galvanostatic studies of the kinetics of deposition and dissolution in the copper + copper sulphate system,” Transactions of the Faraday Society, vol. 55, 1959, pp. 1586-1601.
26. J.O.M. Bockris, and K. Hideaki, “The Dependence of Charge Transfer and Surface Diffusion Rates on the Structure and Stability of an Electrode Surface: Copper,” Journal of the Electrochemical Society, vol. 109, no. 10, 1962, pp. 928-939.
27. K.M. Yin, S.L. Jan, and C.C. Lee, “Current pulse with reverse plating of nickel-iron alloys in a sulphate bath,” Surface & Coatings Technology, vol. 88, no. 1-3, 1997, pp. 219-225.
28. M. Ghaemi, and L. Binder, “Effects of direct and pulse current on electrodeposition of manganese dioxide,” Journal of Power Sources, vol. 111, no. 2, 2002, pp. 248-254.
29. A. Marlot, P. Kern, and D. Landolt, “Pulse plating of Ni-Mo alloys from Ni-rich electrolytes,” Electrochimica Acta, vol. 48, no. 1, 2002, pp. 29-36.
30. H. Natter, M. Schmelzer, and R. Hempelmann, “Nanocrystalline nickel and nickel-copper alloys: Synthesis, characterization, and thermal stability,” Journal of Materials Research, vol. 13, no. 5, 1998, pp. 1186-1197.
31. S.D. Beattie, and J.R. Dahn, “Single Bath, Pulsed Electrodeposition of Copper-Tin Alloy Negative Electrodes for Lithium-ion Batteries,” Journal of the Electrochemical Society, vol. 150, no. 7, 2003, pp. A894-A898.
32. J.C. Puippe, and N. Ibl, “INFLUENCE OF CHARGE AND DISCHARGE OF ELECTRIC DOUBLE-LAYER IN PULSE PLATING,” Journal of Applied Electrochemistry, vol. 10, no. 6, 1980, pp. 775-784.
33. H.Y. Cheh, “Electrodeposition of Gold by Pulsed Current,” Journal of the Electrochemical Society, vol. 118, no. 4, 1971, pp. 551-557.
34. M. Datta, and D. Landolt, “Experimental investigation of mass transport in pulse plating,” Surface Technology, vol. 25, no. 2, 1985, pp. 97-110.
35. C.J. Chen, and C.C. Wan, “A Study of the Current Efficiency Decrease Accompanying Short Pulse Time for Pulse Plating,” Journal of the Electrochemical Society, vol. 136, no. 10, 1989, pp. 2850-2855.
36. J.M. Lee, and A.C. West, “Impact of pulse parameters on current distribution in high aspect ratio vias and through-holes,” Journal of the Electrochemical Society, vol. 152, no. 10, 2005, pp. C645-C651.
37. M. Hayase, and M. Nagao, “Effect of Reverse Pulse on Copper Fill,” Journal of the Electrochemical Society, vol. 156, no. 6, 2009, pp. D198-D203.
38. T.P. Moffat, J.E. Bonevich, W.H. Huber, A. Stanishevsky, D.R. Kelly, G.R. Stafford, and D. Josell, “Superconformal electrodeposition of copper in 500-90 nm features,” Journal of the Electrochemical Society, vol. 147, no. 12, 2000, pp. 4524-4535.
39. P. Dixit, and J.M. Miao, “Aspect-ratio-dependent copper electrodeposition technique for very high aspect-ratio through-hole plating,” Journal of the Electrochemical Society, vol. 153, no. 6, 2006, pp. G552-G559.
40. K.L. Lin, and Y.H. Liu, “The cathode current efficiency of flip-chip solder bump plating,” Journal of the Electrochemical Society, vol. 150, no. 8, 2003, pp. C529-C532.
41. E.J. Taylor, J.J. Sun, B. Hammack, C. Davidson, and M.E. Inman, “Electrically mediated plating of semiconductor substrates, chip scale packages & high-density interconnect PWBs,” Plating and Surface Finishing, vol. 89, no. 5, 2002, pp. 88-93.
42. A.C. West, “Theory of filling of high-aspect ratio trenches and vias in presence of additives,” Journal of the Electrochemical Society, vol. 147, no. 1, 2000, pp. 227-232.
43. D. Josell, D. Wheeler, and T.P. Moffat, “Superconformal Electrodeposition in vias,” Electrochemical and Solid State Letters, vol. 5, no. 4, 2002, pp. C49-C52.
44. P. Dixit, J.M. Miao, and R. Preisser, “Fabrication of high aspect ratio 35 mu m pitch through-wafer copper interconnects by electroplating for 3-D wafer stacking,” Electrochemical and Solid State Letters, vol. 9, no. 10, 2006, pp. G305-G308.
45. E.A.B. G.B. Brook, Smithells Light Metals Handbook, Butterworth-Heinemann, 1998.
46. R.A. Robert E. Reed-Hill, R. Abbaschian, Physical Metallurgy Principles (3rd edition), Pws Pub Co, 1991.
47. G.F.V.V. George F. Vander Voort, Metallography, principles and practice, Asm Intl, 1999.
48. W. Kleinekathofer, and C.J. Raub, “DEPOSITION OF NICKEL BY PULSE PLATING,” Surface Technology, vol. 7, no. 1, 1978, pp. 23-34.
49. R. Viswanathan, and J. Makhoul, “QUANTIZATION PROPERTIES OF TRANSMISSION PARAMETERS IN LINEAR PREDICTIVE SYSTEMS,” Ieee Transactions on Acoustics Speech and Signal Processing, vol. AS23, no. 3, 1975, pp. 309-321.
50. W. Paatsch, “ZINC DEPOSITION BY PULSE PLATING,” Galvanotechnik, vol. 71, no. 2, 1980, pp. 107-111.
51. M. McLean, and B. Gale, “Surface energy anisotropy by an improved thermal grooving technique,” Philosophical Magazine, vol. 20, no. 167, 1969, pp. 1033 - 1045.