簡易檢索 / 詳目顯示

研究生: 黃仕銘
Huang, Shih-Ming
論文名稱: 電子在量子點中的複數量子運動
Electronic Complex Quantum Motion in a Quantum Dot
指導教授: 楊憲東
Yang, Ciann-Dong
學位類別: 博士
Doctor
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 112
中文關鍵詞: 複數力學量子點磁阻現象量子混沌封閉性軌跡
外文關鍵詞: Complex Mechanics, Quantum Dots, Magneto Resistance, Quantum Chaos, Closed Trajectory.
相關次數: 點閱:138下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米結構量子點歷來素有人造原子之稱,然而不像一般的天然原子,量子點中仍然有一些現象是近代量子物理學所無法解釋的,在低磁場強度下的磁電阻(magneto-resistance)現象就是其一。從古典力學的角度來看,磁電阻現象可由電子在量子點中的共振散射軌跡來解釋,然而牛頓力學的世界中並不存在量子態與波函數,這使得古典力學的軌跡詮釋雖然可以獲得些許成果,卻與真實的奈米世界格格不入。另一方面從量子力學的角度來看,因為電子的行為只有機率分布沒有軌跡,以致無法建立軌跡共振與磁阻現象之關聯性。本文從複數力學的觀點來解釋量子點中的磁電阻現象,複數力學作為古典與量子世界的橋樑,可以從古典力學所缺乏的量子化觀點,來提供磁電阻現象一個量子軌跡上的解釋。相對於國內外相關研究,本論文所提供的量子點非線性動力學的分析方法是先前文獻所沒有的,它不僅可應用於磁電阻現象的分析,也可應用於量子點的其他光、電、熱等諸效應上。複數力學在這裡的主要功能是提供量子運動的動態方程式,這是電子軌跡分析與量子渾沌分析所需要知道的資訊,但卻是經典量子力學所無法提供的。有了複數力學這個介面,所有應用古典力學的分析方法來解釋磁阻現象的概念都可以完整地結合量子化現象而應用在量子點的分析中。
    本文首先建立電子於等向性量子點(圓形)內的非線性動態方程式。藉由求解此運動方程式,吾人證實複數軌跡的封閉性正是造成磁電阻現象的主要原因。電子進入量子點後在固定且封閉的路徑上運行且產生幾何共振現象,準確地回到原來的出發點。當外加磁場強度值恰好滿足軌跡的共振條件時,電子的運動將完全被限制在量子點的入口附近,使其無法離開量子點而造成了電阻的上升。文中的研究成果顯示,計算所得之共振磁場強度與造成電阻峰值之磁場強度測量值一致。
    接下來吾人透過複數力學進一步建立非等向性量子點的模型(橢圓形),使其更接近實際量子點的行為。對於橢圓形量子點中出現的渾沌現象,吾人利用李氏指數來量化並計算電子軌跡的混沌強度,並且分析電子混沌動態對於磁電阻現象的影響。
    最後吾人在本論文中求出電子在不同量子態的混沌軌跡,利用一條量子混沌軌跡在空間所掃過軌跡點的分布與機率密度函數所預測者一致的特性,重建量子力學中的機率密度函數。並且證實渾沌程度越強的電子軌跡,重建出來的機率密度函數越完整。

    Nanostructure quantum dot is regarded as the well-known “artificial atom” in recent years. However, unlike common atoms, quantum dots still have some characteristics which still remain unexplainable by conventional quantum mechanics. Magneto-resistance under the action of low-intensity magnetic field is one of these unaccountable phenomena. From the viewpoint of classical mechanics, the effect of trajectory resonance might account for the occurrence of magneto-resistance in quantum dots. However, because classical trajectories cannot exhibit the quantum-state-dependent nature of quantum dots, only qualitative description of magneto-resistance could be made by using classical approaches. On the other hand, the absence of trajectory interpretation in quantum mechanics makes it impossible to relate magneto-resistance to the resonance of quantum trajectories. To conquer the existing difficulty, the present thesis provides a nonlinear dynamic analysis of magneto-resistance via the framework of complex mechanics, which endows classical mechanics with quantization and furnishes quantum mechanics with dynamics equations of motion. For a single quantum dot, the quantum dynamical equations of motion established in this thesis, which have not been reported in the existing literature, are indispensable to the study of the nonlinear phenomena, such as stability, bifurcation and chaos in quantum dots. Through the interface of complex mechanics, magneto-resistance as well as other optic, electronic and thermal properties of quantum dots can be analyzed quantum mechanically by using the tools and concepts already developed in classical mechanics.
    At first a set of nonlinear equations of motion are established to describe the electronic quantum motion in an isotropic (circular) quantum dot. In terms of the solutions to the equations of motion, we reveal that the closeness of the complex trajectories is the main cause of magneto-resistance in quantum dots. An incident electron with a closed trajectory implies that it returns to the entrance of the quantum dot and thus raises the electronic resistance of the dot. We point out that the existence of such closed trajectories is a consequence of geometric resonance. The critical magnetic field leading to geometric resonance is derived and a preliminary result shows that the computed critical magnetic field is identical to the observed magnetic field causing magneto-resistance peaks.
    We then consider an anisotropic quantum dot with elliptic shape, which is closer to the practical situation than a circular dot. Quantum chaotic trajectories in various quantum states are found out first and the distribution of the spatial points swept by a single quantum trajectory is shown to be consistent with the probability distribution determined by wavefunctions. We make use of Lyapunov exponent to quantify the degree of chaos of quantum trajectories. Our study reveals a remarkable observation that chaotic behavior is favorable for an electron to pass the dot and hence contributes to the conductance of the quantum dot.

    CONTENTS CHINESE ABSTRACT i ABSTRACT iii CHINESE ABSTRACT OF EACH CHAPTER v CONTENTS xii LIST OF TABLES xv LIST OF FIGURES xv NOMENCLATURE xviii CHAPTER I INTRODUCTION 1 1.1 Motivation 1 1.2 Literature Survey 2 1.2.1 The magneto-resistance of an isotropic quantum dot 2 1.2.2 The connection between magneto -resistance and chaotic behavior in an anisotropic quantum dot. 3 1.2.3 Relate probability density to the classical chaos 3 1.3 Contributions 4 1.4 Organizations 5 CHAPTER II T HE FUNDAMENTAL OF COMPLEX MECHANICS 8 2.1 Quantum Hamilton-Jacobi Theory 9 2.2 The Conservative System in Complex Domain 11 2.3 Complex Quantum Hamiltonian in Polar Coordinates 12 2.4 Complex Quantum Hamiltonian in 2D Cartesian Coordinates 13 2.5 Quantization of Period of Two -Dimensional Oscillator 14 CHAPTER III QUANTUM HAMILTON DYNAMICS IN A CIRCULAR QUANTUM DOT WITH ISOTROPIC HARMONIC POTENTIAL BARRIER 17 3.1 Introductions of Quantum dots 18 3.2 Quantum Hamilton Dynamics in 2DEG Quantum Dots 20 3.3 Far-Infrared Transmission of 2DEG Quantum Dots 22 3.4 The Shell Structures in a Single Quantum Dot 24 3.5 The Standing Wave Motion in an Isotropic Quantum Dot 26 3.6 Experimental Verification of Predicted Nonlinear Dynamics 33 3.7 Thermal Stability of Magnetic Stagnation 36 3.8 Summary 37 CHAPTER IV QUANTUM HAMILTON DYNAMICS IN AN ELLIPTIC QUANTUM DOT WITH ANISOTROPIC HARMONIC POTENTIAL BARRIER 51 4.1 Quantum Dynamics in an Anisotropic Harmonic Oscillator 51 4.2 Lyapunov Exponent 54 4.3 Complex Resonant Trajectory in the Ground State 60 4.4 Complex Resonant Trajectory in Excited States 62 4.5 Quantum Entanglement in an Anisotropic Quantum Dot 65 4.6 Summary 67 CHAPTER V RECONSTRUCTION OF THE PROBABILITY DENSITY FUNCTION FROM CHAOTIC TRAJECTORIES IN AN ELLIPTIC QUANTUM DOT 80 5.1 The Probability Interpretation in a Quantum System 80 5.1.1 The Probability in Quantum Mechanics 80 5.1.2 The Probability Interpretation for Chaotic Behavior 82 5.2 The WKB Approximation Method 84 5.3 The Probability Determined from a Time Series Data 86 5.4 Relate Lyapunov Exponent to the Probability Density 87 5.4.1 The first excited state 87 5.4.2 (nx,ny)=(2,2) 89 5.4.3 Probability reconstruction from more than two trajectories 91 5.5 Summary 92 CHAPTER VI CONCLUSIONS AND FUTURE WORK 104 REFERENCES 106 PUBLICATION LIST 112 VITA 112

    [1].Ahmed, H., Nakazato, K., 1996, “Single electron devices”, Microelectronic engineering, Vol. 32, pp.297-315.
    [2].Akis , R., Ferry, D. K., and Bird, J. P., 1997, “Wave Function Scarring Effects in Open Stadium Shaped Quantum Dots”, Physical Review Letter, Vol.79, pp.123–126 and Physics, Vol. 13, pp.51-102
    [3].Antoniou, I., and Gustafson, K., 1993, “From Probabilistic Description to Deterministic Dynamics”, Physica A, Vol. 197, pp.153-166.
    [4].Antoniou, I., and Gustafson, K., 1997, “From Irreversible Markov Semigroups to Chaotic Dynamics”, Physica A, Vol. 236, pp.296-308.
    [5].Antoniou, I., Christidis, TH., and Gustafson, K., 2004, “Probability from Chaos”, International Journal of Quantum Chemistry, Vol. 98, pp.150-159.
    [6].Antoniou, I., Gustafson, K. and Suchanecki, Z., 1998, “On the Inverse Problem of Statistical Physics: from Irreversible Semigroups to Chaotic Dynamics”, Physica A, Vol. 252, pp.345-361.
    [7].Austing, D. G., Honda T, and Tarucha S., 1996, “A new design for submicron double-barrier resonant tunnelling transistors”, Semicond. Science and Technology. Vol. 11, pp.388-391.
    [8].Austing, D. G., Honda T, Tokura Y, and Tarucha S, 1995, “Sub-Micron Vertical AlGaAs/GaAs Resonant Tunneling Single Electron Transistor”, Japan Journal of Applied Physics, Vol. 34, pp.1320-1325.
    [9].Bird, J. P., Ferry, D. K., Akis, R., Ochiai, Y., Ishibashi, K., Aoyagi, Y., and Sugano, T., 1996, “Periodic conductance fluctuations and stable orbits in mesoscopic semiconductor billiards”, Europhysics Letters, Vol. 35, pp.529-534.
    [10].Bollweg, K., Kurth, T., Heitmann, D., 1995, “Circular polarization of far-infrared modes in antidot arrays”, Physical Review B, Vol. 52, pp.8379-8383
    [11].Brunner, R., Meisels , R., Kuchar, F., Akis , R., Ferry, D. K., Bird, J. P., 2008, “Classical and quantum dynamics in an array of electron billiards”, Physica E, Vol. 40, pp.1315-1318
    [12].Brunner, R., Meisels , R., Kuchar, F., Akis , R., Ferry, D. K., Bird, J. P., 2007, “Magneto-transport in open quantum dot arrays at the transition from low to high magnetic field: regularity and chaos”, International Journal of Modern Physics B, Vol. 21, pp.1288-1296.
    [13].Brunner, R., Meisels, R., Kuchar, F., Elhassan, M., Bird, J. P., Ishibashi, K., 2004, “Investigations of backscattering peaks and of the nature of the confining potential in open quantum dots”, Physica E, Vol. 21, pp.491-495.
    [14].Casdagli, M., Sauer, T., and Yorke, J.A., 1991, “Embedology”, Journal of Statistical Physics, Vol. 65,pp.579-616
    [15].Darwin C G, 1930, ”The diamagnetism of the free electron”, Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 27, pp.86-90.
    [16].Dippel, O., Schmelcher, P., and Cederbaum, L.S., 1994, “Charged Anisotropic Harmonic Oscillator and The Hydrogen Atom in Crossed Fields”, Physics Review A, Vol. 49, pp.4415-4429.
    [17].Eckmann, J.P., and Ruelle, D., 1985, “Ergodic Theory of Chaos and Strange Attractors”, Reviews of Modern Physics, Vol. 57, pp.617-656
    [18].Gang Chen, Bonadeo, N. H., Steel, D. G., Gammon, D., Gammon, Katzer, D. S., Park, D., and Sham, L. J., 2000, “Optically Induced Entanglement of Excitons in a Single Quantum Dot”, Science, Vol. 289 no. 5486 pp. 1906-1909 DOI: 10.1126/science.289.5486.1906
    [19].Gerhardts, P. R., Weiss, D., Klitzing, K. v., 1989, “Novel magnetoresistance oscillations in a periodically modulated two-dimensional electron gas”, Physical Review Letter, Vol. 62, pp.1173-1176
    [20].Goldstein, H.,1980, Classical Mechanics, Chapter 10, 2nd Ed., Addison Wesley Publishing Company
    [21].Goldstein, S., Misra, B., and Courbage, M., 1981, “On Intrinsic Randomness of Dynamical Systems”, Journal of Statistical Physics, Vol. 25, pp.111-126
    [22].Goodrich, R., Gustafson, K., and Misra, B., 1980, “On Converse to Koopman's Lemma”, Physica A, Vol. 102, pp.379-388
    [23].Heitmann, D., Gudmundsson, V., Hochgrafe, M., Krahne, R., Pfannkuche, D., 2002, “Far-infrared spectroscopy of tailored quantum wires, quantum dots and antidot arrays”, Physica E 14, pp.37 – 44
    [24].Heitmann, D., and Hu, Can-Ming, 2010, “Quantum Materials, Lateral Semiconductor Nanostructures, Hybrid Systems and Nanocrystals”, NanoScience and Technology, pp.103-138.
    [25].Herold, H., Ruder, H., and Wunner, G., 1981, “The Two-Body Problem in the Presence of a Homogeneous Magnetic Field”, Journal of Physics B, Vol. 14, pp.751-764.
    [26].Hilborn, R.C., 2000, “Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers”, Oxford university
    [27].Hopf, E., 1934, “On Causality, Statistics, and Probability”, Journal of Mathematics
    [28].Jahnson, R.A., Palmer, K.J., and Sell, G., 1987, “Ergodic Properties of Linear Dynamical Systems”, SIAM Journal on Mathematical Analysis, Vol. 18, pp. 1-33.
    [29].Jancel, R., 1969, Foundations of Classical and Quantum Statistical Mechanics, Oxford, UK.
    [30].John H. Reina, Luis Quiroga, and Neil F. Johnson, 2000, ” Quantum entanglement and information processing via excitons in optically driven quantum Dots”, Physical. Review. A, Vol. 62, 012305
    [31].Kastner, M. A., 1993, “Artificial atoms”, American institute of physics, Jan, pp.24-31
    [32].Kastner, M. A., 1993, “Mesoscopic physics and artificial atoms”, AIP Conf. Proc. Vol. 275, pp.573-586.
    [33].Keren K, Stern A and Sivan U, 2000, “The different effect of electron-electron interaction on the spectrum of atoms and quantum dots”, The European Physical Journal B, Vol. 18, pp.311-318.
    [34].Kolmogorov, A.N., 1960, “A New Metric Invariant for Transitive Dynamical Systems and Automorphisms in Lebesgue Spaces, Doklady of Russian Academy of Sciences”, Mathematical Reviews, Vol. 21, pp.386
    [35].Koopman, B., 1931, “Hamiltonian Systems and Transformations in Hibert Space”, Proceedings of the National Academy of Sciences of the United States of America, Vol. 17, pp.315-318
    [36].Koopman, B., and von Neumann, J., 1932, “Dynamical Systems of Continuous Spectra”, Proceedings of the National Academy of Sciences of the United States of America, Vol. 18, pp.255-266
    [37].Kouwenhoven, L. P., Austing, D. G. and Tarucha , S., 2001, “Few-electron quantum dots”, Reports on Progress in Physics Vol. 64, pp.701-736
    [38].Krylov, N.S., 1979, “Works on the Foundations of Statistical Physics”, Princeton University.
    [39].Lin, L. H., et al. 2000, “Magneto-transport in corrugated quantum wires”, Physica E Vol. 7, pp.750-755
    [40].M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinsky, Z. R. Wasilewski, O. Stern, and A. Forchel, 2001, “Coupling and Entangling of Quantum States in Quantum Dot Molecules”, Science, Vol. 291, pp.451-453
    [41].Mancoff , F. B., Zielinski , L. J., Marcus , C. M., 1995, ”Shubnikov–de Haas oscillations in a two-dimensional electron gas in a spatially random magnetic field”, Physical Review B, Vol. 51, pp.13269–13273.
    [42].Mané, R., Rand, D., and Young, L.S., 1981, Dynamicl Systems and Turbulence, Springer, Berlin
    [43].Meyn, S.P., and Tweedie, R.L., 2005, Markov Chains and Stochastic Stability, Springer-Verlag, London.
    [44].Meurer, B., Heitmann, D., Ploog , K., 1992, “Single-electron charging of quantum-dot atoms”, Physical Review Letter, Vol. 68, pp.1371-1374
    [45].Miller, S.C., and Good, R.H., 1953, “A WKB-Type Approximation to the Schrödinger Equation”, Physical Review, Vol. 91, pp.174-179
    [46].Misra, B., and Prigogine, I., 1983, “In Long Time Predictions in Dynamical Systems”, Wiley, New York, pp.21-43.
    [47].Misra, B., Prigogine, I., and Courbage, M., 1979, “From Deterministic Dynamics to Probabilistic Descriptions”, Physica A, Vol. 98, pp.1-26.
    [48].Muller , G., Weiss , D., von Klitzing , K., Streda , P., Weimann , G., 1995, “Quantum Hall effect in a one-dimensional lateral superlattice: Nearly dissipationless transport across high potential barriers”, Physical Review B, Vol. 51, pp.10236-10239
    [49].Ochiai , Y., et al. 1997, ”Backscattering of ballistic electrons in a corrugated-gate quantum wire”, Physical Review B, Vol. 56, pp.1073-1076.
    [50].Pesin, Ya. B., 1977, “Lyapunov Characteristic Exponents and Smooth Ergodic Theory”, Russian Mathematical Surveys, Vol. 32, pp.55-114.
    [51].Prigogine, I., 1980, From Being to Becoming: The New Science of Connectedness, San Francisco.
    [52].Rabinovich, M.I., 1979, “Stochastic Self-Oscillations and Turbulence”, Soviet Physics Uspekhi, Vol. 21, pp.443-469
    [53].Schuster , R., Ensslin , K., Wharam , D., Khun , S., Kotthaus , J. P., Bohm , G., Klein, W., Trankle , G., Weimann , G., 1994, “Phase-coherent electrons in a finite antidot lattice”, Physical Review B, Vol. 49, pp.8510-8514
    [54].Sinai, Y.G., 1988, “About A. N. Komogorov’s Work on the Entropy of Dynamical Systems, Ergodic Theory and Dynamical Systems”, Vol. 8, pp.501-502.
    [55]Stomer , H. L., Dingle, R., Gossard, A. C., Wiegmann W., Sturge M.D., 1979, ”Two-dimensional electron gas at a semiconductor-semiconductor interface”, Solid State Communications, Vol. 29, pp.705-709
    [56].Takens, F., 1980, “Detecting Strange Attractor in Turbulence”. In D. Rand and L. S. Young, editors, Dynamical Systems and Turbulence, Warwick, page 366, Springer, Berlin, 1981
    [57].Tarucha, S, Austing, D. G., Honda, T., van der Hage, R. J., and Kouwenhoven, L. P., 1996, ”Shell Filling and Spin Effects in a Few Electron Quantum Dot”, Physical Review Letters, Vol. 77, pp.3613-3616
    [58].Von Plato, J., 1991, “Boltzmann's Ergodic Hypothesis”, Archive for History of Exact Sciences, Vol. 42, pp.71-89.
    [59].Winkler , R. W., Kotthaus , J. P., Ploog , K., 1989, Landau band conductivity in a two-dimensional electron system modulated by an artificial one-dimensional superlattice potential”, Physical Review Letters, Vol. 62, pp.1177-1180.
    [60].Yang C. D., 2006, “Quantum Hamilton mechanics Hamilton equations of quantum motion, origin of quantum operators, and proof of quantization axiom,” Annals of Physics, Vol. 321, pp.2876-2926.
    [61].Yang C. D., and Weng H.J., 2008, “Complex Dynamics in Diatomic Molecules Part II: Quantum Trajectories,” Chaos, Solitons & Fractals, Vol. 38, pp.16-35.
    [62].Yang C. D., and Weng H.J., 2010, “Electronic Quantum Motions in Hydrogen Molecule Ion,” International Journal of Quantum Chemistry, online. DOI: 10.1002/qua.22608.
    [63].Yang, C. D., 2010, Complex Mechanics, Progress in Nonlinear Science, ISSN 2077-8139, Asian Academic Publisher, Hong Kong
    [64].Yang, C. D., 2006, “Modeling Quantum Harmonic Oscillator in Complex Domain,” Chaos, Solitons, & Fractals, Vol.30, pp. 342 – 362.
    [65].Yang, C. D., 2008, “Trajectory Interpretation of the Uncertainty Principle in 1D Systems Using Complex Bohmian Mechanics”, Physics Letters A, Vol.372, pp. 6240-6253.
    [66].Yang, C.D., 2005, “Quantum Dynamics of Hydrogen Atom in Complex Space”, Annuals of Physics, Vol.319, pp.399-443.
    [67].Yang, C.D., 2005, “Wave-Particle Duality in Complex Space”, Annuals of Physics, Vol. 319, pp.444-470
    [68].Yang, C.D., 2007, “Quantum Motion in Complex Space”, Chaos, Solitons and Fractals, Vol.33, pp.1073-1092

    下載圖示 校內:2013-08-22公開
    校外:2013-08-22公開
    QR CODE