| 研究生: |
陳柏榮 Chen, Bor-Zone |
|---|---|
| 論文名稱: |
壓電驅動材料測試系統之實現與其在電子封裝上之應用 Realization of piezoelectric driven material testing system and its application in electronic package |
| 指導教授: |
陳國聲
Chen, Kuo-Shen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 電子封裝 、壓電 、自調適控制 、適應控制器 、疲勞破壞 |
| 外文關鍵詞: | Self-Turning Regulator, Adaptive Control, Electronic Packaging, Piezoelectricity, Fatigue |
| 相關次數: | 點閱:124 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文的目標在於發展一小尺度材料的測試系統與其相關的控制方法,並且能將其應用於BGA電子封裝中錫球的疲勞測試,因為現行之測試方式有著速度較慢且無法理論解析的缺點,所以本文針對這兩項缺點提出了改良的方式,包括加速測試的速度以及提供有用的測試結果用以理論解析。而在測試速度的改良方面為將現行以緩慢熱能驅動的方式改以較快速的壓電致動方式取代,而在另一方面則是對測試機構加入控制系統以獲得定量分析的測試結果,而後可以利用破壞力學計算以推求材料的性質參數,以作為理論的分析之用,進而期望能從根本上改良電子封裝的問題。另外由於試片因疲勞週期而裂痕成長導致剛性下降,因此本系統為時變系統,所以採取針對時變系統常被使用的適應控制器作為控制策略,適應控制器的設計則是採用自調式控制的設計法則。控制器部份除了採用適應控制器之外,本文也採用傳統之PID控制器來進行設計與測試實驗,用以與適應控制器比較其間的優劣與適用性。
除了針對電子封裝材料的測試之外,在未來的展望方面,期望能以由本材料疲勞測試系統推廣至其他的小尺度材料測試方式,諸如拉伸,潛變,應力釋放等測試,另外也期望能將本文之控制器應用於其他時變的機械系統,例如油壓萬能材料測試機。
關鍵字: 疲勞破壞,適應控制器,自調適控制,壓電,電子封裝
Traditionally, packaging reliability is characterized by thermal-cycling fatigue testing. However, the testing speed is slow. In addition, the coupling between mechanical fatigue loading, the variation of temperature dependent material properties, and time dependent effect such as stress relaxation causes difficulty to develop useful analytical models for understanding the reliability of solder joints. By replacing the thermal cycling with this piezoelectric actuation system under temperature controlled environment plus additional creep/relaxation experiments, it is possible to identify the contribution from each aspect, to gain fundamental understanding, and to develop theory to improve packaging design in the future.
This thesis presents the analysis, design, and control of a piezoelectric driven material testing system for electronic packaging applications with emphasis on the mechatronics and control system design. A piezoelectric actuator is used to exert shear fatigue load and the displacement and reaction forces are monitored by both displacement and force sensors. A proper control of experimental conditions is vital for the validity of testing data for the future data reduction. In addition, the parameter variations due to fatigue crack propagation during testing could effectively change the system dynamics and results in unsatisfactory results. In this thesis, both PID and STR adaptive controllers are designed to perform displacement control for this time varying system during testing. By integrating with feedback control, this testing system can effectively accelerate the testing speed from 10-3 to 100 Hz without causing instability. The associated fatigue crack growth can also be obtained from the embedded parameter estimator by the in situ data processing from both displacement and load sensors.
In the future, it is possible to integrate this system with temperature control unit to perform testing at different temperature to fully characterize thermal-mechanical properties of materials. The measured crack propagation rate will be helpful for constructing relevant theories to prevent failure. In addition, the proposed adaptive controller can also be applied in other time-varying mechatronics systems such as hydraulic actuated universal material testing machines.
Keywords: Fatigue, Adaptive Control, Self-Turning Regulator, Piezoelectricity, Electronic Packaging
[1] 陳壽康,“The application of reliability test in IC assembly process”,成功大學機械系專題討論講義,2000年5月2日
[2] T. S. E. Summers and J. W. Morris, Jr, “ Isothermal fatigue behavior of Sn-Pb solder joints” , Journal of Electronic Packaging, Vol. 112, pp.94~100, 1990.
[3] M. A. Palmer & P. E. Redmond & R. W. Messler, Jr,
“Thermomechanical fatigue testing and analysis of solder alloys”, Journal of Electronic Packaging, Vol. 122, pp.48~54, 2000.
[4] C. L. Sanders, Piezo-induced fatigue of solder joints, MIT, M. S. thesis, 2000.
[5] D. T. Read & J.W. Dally, “Fatigue of microlithographically-patterned free-standing aluminum thin film under axial stresses”, Journal of Electronic Packaging,
Vol. 117, pp.1~5, 1995.
[6] 黃啟川,新型材料疲勞測試系統之概念性設計,碩士論文,國立成功大學機械系,2001.
[7] Instron, Model 8500 PLUS, user guide, chapter 6, 1998.
[8] 劉國雄、林樹均、李勝隆、鄭晃忠、葉均蔚,工程材料力學,全華科技圖書股份有限公司,1996
[9] 馮克林,“簡談電子元件銲錫可靠度”,工業材料,Vol. 124,pp.93~99,1997
[10] 楊省樞,“覆晶技術”,工業材料,Vol. 127,pp.90~96,1997
[11] 吳朗,電子陶瓷壓電,全欣科技圖書,1994
[12] K.J. Åström & B. Wittenmark, Adaptive control, Addison Wesley Publishing Company, Inc, 1995.
[13] MTI instruments division of mechanical technology inc., “MTI accumeasure 1500, catalog”, NY, 2001.
[14] M. Ohring, Reliability and failure of electronic materials and devices, Academic Press, New York, 1998.
[15] “中斷的認識與應用” ,成功大學機械系機器人控制與實習課程講義
[16] C.L. Philips & H.T. Nagle, Digital Control System Analysis and Design, Prentice-Hall, 1995
[17] R. W. Hertzberg, Deformation and Fracture Mechanics of Engineering materials, John Wiley & Sons, Inc.,1976.