簡易檢索 / 詳目顯示

研究生: 林以玫
Lin, Yi-Mei
論文名稱: 企業財務中的預測分析:運⽤機器學習 技術提早檢測台灣公司的財務困境
Predictive Analytics in Corporate Finance: Utilizing Machine Learning Techniques for Early Detection of Financial Distress in Taiwanese Companies
指導教授: 林軒竹
Lin, Hsuan-Chu
學位類別: 碩士
Master
系所名稱: 管理學院 - 經營管理碩士學位學程(AMBA)
Advanced Master of Business Administration (AMBA)
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 126
中文關鍵詞: 財務困境預測機器學習Stacking類別不平衡SMOTE集成學習
外文關鍵詞: Financial Distress Prediction, Machine Learning, Class Imbalance, SMOTE, Ensemble Learning, Stacking
相關次數: 點閱:50下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討機器學習技術於財務困境預測中的應用,重點聚焦於類別不平衡資料的處理與模型預測效果之比較。研究以 2969 筆公司年度觀察值為樣本,針對多種常見分類器(如 Neural Network、XGBoost、Random Forest、Extra Trees)在原始資料與SMOTE 平衡處理條件下之表現進行評估。進一步亦建構 Stacking 集成模型,以檢視其是否優於單一模型的預測效果。研究結果顯示,在樣本極度不平衡的情況下,應用 SMOTE 可顯著提升模型整體表現,特別是在召回率(Recall)、F1 分數及AUC等關鍵指標上。Stacking 集成模型進一步優於各單一模型,不僅在各項指標皆展現穩定優勢,亦能在最長達三年前的預測視窗中維持召回率與 F1 分數皆介於 0.94 至 0.96、AUC 值穩定高於 0.98的高水準表現。整體而言,本研究證實機器學習方法在財務困境預測中具備高度可行性與穩健性,顯示其在財務預測領域具備進一步發展之潛力。

    This study investigates the application of machine learning techniques to financial distress prediction, with a particular focus on addressing class imbalance and evaluating model performance. A total of 2,969 firm-year observations were used to assess the performance of several commonly used classifiers (such as Neural Network, XGBoost, Random Forest, and Extra Trees) under both original and SMOTE-balanced conditions. A stacking ensemble model was further constructed to examine whether it could outperform individual classifiers.
    The results show that, under highly imbalanced conditions, applying SMOTE significantly improves overall model performance, particularly in key metrics such as recall, F1-score, and AUC. The stacking ensemble further outperformed all individual models, consistently demonstrating superior and stable results. Notably, even under long-term forecasting scenarios—up to three years in advance—the models maintained high-level performance, with recall and F1-scores ranging from 0.94 to 0.96, and AUC values consistently exceeding 0.98. Overall, this study confirms the feasibility and robustness of machine learning methods in financial distress prediction, highlighting their potential for further development in the financial forecasting domain.

    摘要 i Abstract ii Acknowledgements iv Contents vi List of Tables viii List of Figures x 1 Introduction 1 1.1 Background 1 1.2 Motivation 1 1.3 Objectives 2 2 Literature Review 4 2.1 The Definition of Financial Distress 4 2.2 Statistical Models for Predicting Corporate Financial Distress 8 2.3 Comparison of Statistical Methods and Machine Learning Approaches 14 3 Research Method 17 3.1 Research Sample and Data Preprocessing 18 3.1.1 Data Source and Sample Selection 18 3.1.2 Output Variable 19 3.1.3 Input Variables 21 3.1.4 Label Assignment 50 3.1.5 Sampling Procedure 52 3.1.6 Data Split by Time Point 53 3.1.7 Data Preprocessing 53 3.1.8 Final Training Dataset 53 3.2 Model Training 54 3.2.1 Data Splitting 54 3.3 Model Evaluation 60 4 Experimental Results 66 4.1 Class Imbalance and Model Performance 66 4.2 Base Classifier Evaluation and Stacking Analysis 70 5 Conclusions 78 5.1 Conclusions 78 5.2 Future Research Directions 80 References 82 Appendix A: Features 102 Appendix B: Performance and Heatmap Metrics for Models 104 Appendix B: Performance and Heatmap Metrics for Models 106 Appendix C: Weighted Composite Score Results for Classifier Performance 107 Appendix D: Performance and Heatmap Metrics for Meta-classifier Across Different Stacking Levels 108

    Abiad, A., Mishra, P., & Topalova, P. (2011, January). How does trade evolve in the aftermath of financial crises? (Tech. rep. No. WP/11/3). International Monetary Fund (IMF). https://www.imf.org/external/pubs/ft/wp/2011/wp1103.pdf.
    Agarwal, V., & Taffler, R. (2008). Comparing the performance of market-based and accounting-based bankruptcy prediction models. Journal of Banking & Finance, 32(8), 1541–1551. https://doi.org/10.1016/j.jbankfin.2007.07.014
    Agostini, M. (2018). Corporate financial distress: A roadmap of the academic literature concerning its definition and tools of evaluation. Springer eBooks. https://doi.org/10.1007/978-3-319-78500-4 2.
    Ahmed, M. I., & Cassou, S. P. (2016). Does consumer confidence affect durable goods spending during bad and good economic times equally? Journal of Macroeconomics, 50, 86–97. https://doi.org/10.1016/j.jmacro.2016.08.008.
    Alfaro, E., Garc´ıa, N., Ga´mez, M., & Elizondo, D. (2008). Bankruptcy forecasting: An empirical comparison of adaboost and neural networks. Decision Support Systems, 45, 110–122.
    Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The Journal of Finance, 23(4), 589–609. https://doi.org/10.2307/2978933.
    Altman, E. I., & Hotchkiss, E. (2006). Corporate financial distress and bankruptcy: Predict and avoid bankruptcy, analyze and invest in distressed debt. Wiley.
    Altman, E. I., Haldeman, R. G., & Narayanan, P. (1977). Zeta analysis: A new model to identify bankruptcy risk of corporations. Journal of Banking and Finance, 1 , 29–54. https://doi.org/10.1016/0378-4266(77)90017-6
    Amihud, Y., Mendelson, H., & Pedersen, L. H. (2002). Liquidity and asset returns: An overview. Financial Analysts Journal, 58(6), 52–61. https://doi.org/10.2469/faj.v58.n6.2488.
    Andrade, G., & Kaplan, S. N. (1998). How costly is financial (not economic) distress? evidence from highly leveraged transactions that became distressed. The Journal of Finance, 53(5), 1443–1493. https://doi.org/10.1111/0022-1082.00062.
    Arena, M. (2008). Bank failures and bank fundamentals: A comparative analysis of latin america and east asia during the nineties using bank-level data. Journal of Banking & Finance, 32(2), 299–310. http://doi.org/10.1016/j.jbankfin.2007.03.011.
    Asquith, P., Gertner, R. H., & Scharfstein, D. (1994). Anatomy of financial distress: An examination of junk-bond issuers. The Quarterly Journal of Economics, 109(3), 625–658. https://doi.org/10.2307/2118416.
    Atanasova, C. V., & Wilson, N. (2004). Disequilibrium in the uk corporate loan market. Journal of Banking Finance, 28(3), 595–614. https://doi.org/10.1016/S0378-4266(03)00037-2.
    Bajaj, M., & Vijh, A. M. (1990). Dividend clienteles and the information content of dividend changes. Journal of Financial Economics, 26(2), 193–219. https://doi.org/10.1016/0304-405X(90)90003-I.
    Beaver, W. H. (1966). Financial ratios as predictors of failure. Journal of Accounting Research, 4, 71–111. https://doi.org/10.2307/2490171.
    Beaver, W. H., McNichols, M. F., & Rhie, J. W. (2005). Have financial statements become less informative? evidence from the ability of financial ratios to predict bankruptcy. Review of Accounting Studies, 10(1), 93–122. https://doi.org/10.1007/s11142-004-6593-7.
    Becchetti, L., & Sierra, J. (2003). Bankruptcy risk and productive efficiency in manufacturing firms. Journal of Banking & Finance, 27(10), 2099–2120. https://doi.org/10.1016/S0378-4266(02)00319-9.
    Bekaert, G., Engstrom, E., & Ermolov, A. (2020). Aggregate demand and aggregate supply effects of covid-19: A real-time analysis (tech. rep.). Board of Governors of the Federal Reserve System. https://doi.org/10.17016/FEDS.2020.049.
    Blum, M. P. (1974). Failing company discriminant analysis. Journal of Accounting Research, 12(1), 1–25. https://doi.org/10.2307/2490525.
    Bogliacino, F., Cirillo, V., & Guarascio, D. (2017). The dynamics of profits and wages: Technology, offshoring and demand. Industry and Innovation, 24(4), 361–390. https://doi.org/10.1080/13662716.2017.1349651.
    Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. Proceedings of the Fifth Annual Workshop on Computational Learning Theory (COLT), 144–152. https://doi.org/10.1145/130385.130401.
    Brealey, R. A., Myers, S. C., & Allen, F. (2019). Principles of corporate finance (13th). McGraw-Hill Education.
    Brealey, R. A., Myers, S. C., & Marcus, A. J. (2007). Fundamentals of corporate finance (5th). McGraw-Hill Education.
    Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140. https://doi.org/10.1007/BF00058655.
    Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324.
    Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Wadsworth International Group.
    Briscoe, G. (1976). The significance of financial expectations in predicting consumer expenditures: A quarterly analysis. Applied Economics, 8(2), 99–119. https://doi.org/10.1080/00036847600000010.
    Brown, R., Lin˜ares-Zegarra, J., & Wilson, J. O. S. (2018). The (potential) impact of brexit on uk smes: Regional evidence and public policy implications. Regional Studies, 52(4), 500–512. https://doi.org/10.1080/00343404.2018.1426550.
    Bureau of Labor Statistics. (2024). Employment situation summary. https://www.bls.gov/news.release/empsit.nr0.htm.
    Bussi`ere, M., Chudik, A., & Sestieri, G. (2009). Modelling global trade flows: Results from a gvar model (tech. rep. No. Working Paper No. 1087). European Central Bank. Frankfurt am Main, Germany. https://hdl.handle.net/10419/153521.
    Carroll, C. D. (1992). The buffer-stock theory of saving: Some macroeconomic evidence. Brookings Papers on Economic Activity, 1992(2), 61–156. https://doi.org/10.2307/2534583.
    Chang, C. H. (2012). The relationship between business cycles, macroeconomic variables, and taiwan’s stock price index. Journal of Taiwanese Economic Research, 15(4), 1–25.
    Charitou, A., Neophytou, E., & Charalambous, C. (2004). Predicting corporate failure: Empirical evidence for the uk. European Accounting Review, 13(3), 465–497. https://doi.org/10.1080/0963818042000216811.
    Chava, S., & Jarrow, R. A. (2004). Bankruptcy prediction with industry effects. Review of Accounting Studies, 9(4), 397–417. https://doi.org/10.1023/B:RAST.0000037615.47148.57.
    Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). Smote: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 321–357. http://dx.doi.org/10.1613/jair.953.
    Chen, C.-H., Chen, L.-F., & Dai, J.-J. (2007). Impact of choice-based sample bias on predicting corporate financial distress. Soochow Journal of Economics and
    Business, 57, 29–47. http://dx.doi.org/10.29735/SJEB.200706.0002.
    Chen, S.-S. (2011). Lack of consumer confidence and stock returns. Journal of Empirical Finance, 18(2), 225–236. https://doi.org/10.1016/j.jempfin.2010.12.004.
    Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794. https://doi.org/10.1145/2939672.2939785.
    Coats, F. L., & Fant, P. K. (1993). Recognizing financial distress patterns using a neural network tool. Financial Management, 22(3), 142–155. https://doi.org/10.2307/3665934.
    Data Base Camp. (2024). Svm explained: A comprehensive guide on support vector machines. Retrieved January 10, 2024, from https://databasecamp.de/en/ml/svm-explained.
    Daveri, F., & Tabellini, G. (1997). Unemployment, growth and taxation in industrial countries. Economic Policy, 12(30), 47–104. https://doi.org/10.1111/1468-0327.00022.
    Davis, E. P. (1994). Banking, corporate finance, and monetary policy: An empirical perspective. Oxford Review of Economic Policy, 10(4), 49–64. https://doi.org/10.1093/oxrep/10.4.49.
    Deakin, E. B. (1972). A discriminant analysis of predictors of business failure. Journal of Accounting Research, 10(1), 167–179. https://doi.org/10.2307/2490225.
    Denis, D. J., Denis, D. K., & Sarin, A. (1994). The information content of dividend changes: Cash flow signaling, overinvestment, and dividend clienteles. The Journal of Financial and Quantitative Analysis, 29(4), 567–587.https://www.jstor.org/stable/2331110.
    Elliott, B., & Elliott, J. (2017). Financial accounting, reporting, and analysis (3rd). Oxford University Press.
    European Central Bank. (2019, January). The role of public expenditure in economic stabilization. https://www.ecb.europa.eu/press/economic-bulletin/focus/2019/html/ecb.ebbox201901 02∼52a7c9d7ae.en.html.
    Fawcett, T. (2006). An introduction to roc analysis. Pattern Recognition Letters, 27(8), 861–874. https://doi.org/10.1016/j.patrec.2005.10.010.
    FitzPatrick, P. J. (1932). A comparison of the ratios of successful industrial enterprises with those of failed companies. The Certified Public Accountant, 12(2), 598–605.
    Fraser, L. M., & Ormiston, A. (2016). Understanding financial statements (10th). Pearson.
    Freund, Y., & Schapire, R. E. (1995). A decision-theoretic generalization of on-line learning and an application to boosting. Proceedings of the Second European Conference on Computational Learning Theory, 23–37. https://doi.org/10.1007/3-540-59119-2 166.
    Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1), 119–139. https://doi.org/10.1006/jcss.1997.1504.
    Fuerst, T. S. (1992). Liquidity, loanable funds, and real activity. Journal of Monetary Economics, 29(1), 3–24. https://doi.org/10.1016/0304-3932(92)90021-S.
    Geng, R., Bose, I., & Chen, X. (2015). Prediction of financial distress: An empirical study of listed chinese companies using data mining. European Journal of Operational Research, 241(1), 236–247. https://doi.org/10.1016/j.ejor.2014.08.016.
    Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees. Machine Learning, 63(1), 3–42. http://doi.org/10.1007/s10994-006-6226-1.
    Gilbert, L. R., Menon, K., & Schwartz, K. (1990). Predicting bankruptcy for firms in financial distress. Journal of Business Finance & Accounting, 17(1), 161–171. https://doi.org/10.1111/j.1468-5957.1990.tb00555.x.
    Gleißner, W., Gu¨nther, T., & Walksha¨usl, C. (2022). Financial sustainability: Measurement and empirical evidence. Journal of Business Economics, 92(3), 467–516. https://doi.org/10.1007/s11573-022-01081-0.
    Harrison, W. T., Horngren, C. T., & Thomas, C. W. (2012). Financial accounting: International financial reporting standards (9th). Pearson.
    Harrison, W. T., Horngren, C. T., Thomas, C. W., Tietz, W. M., & Suwardy, T. (2014). Financial accounting: International financial reporting standards (9th). Pearson Education.
    Hayashi, F., & Prescott, E. C. (2002). The 1990s in japan: A lost decade. Review of Economic Dynamics, 5(1), 206–235. https://doi.org/10.1006/redy.2001.0149.
    Hernandez Tinoco, M., & Wilson, N. (2013). Financial distress and bankruptcy prediction among listed companies using accounting, market, and macroeconomic variables. International Review of Financial Analysis, 30, 394–419. https://doi.org/10.1016/j.irfa.2013.02.013.
    Ho, T. K. (1998). The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8), 832–844. http://dx.doi.org/10.1109/34.709601.
    Holmstrom, B., & Tirole, J. (1993). Market liquidity and performance monitoring. Journal of Political Economy, 101(4), 678–709. https://doi.org/10.1086/261891.
    Hsieh, C.-T., & Song, Z. (2024). Challenging the transition from investment- to consumption-led growth in china (tech. rep.). National Bureau of Economic Research (NBER). https://www.nber.org/reporter/2024number2/challenging-transition-investment-consumption-led-growth-china.
    Hsieh, D. A. (1995). Nonlinear dynamics in financial markets: Evidence and implications [Presented at the Institute for Quantitative Research in Finance, October 2-5, 1994.]. Institute for Quantitative Research in Finance. https://example.com.
    International Monetary Fund. (2024). World economic outlook: October 2024 update. https://www.imf.org/en/Publications/WEO/Issues/2024/10/22/world-economic-outlook october-2024.
    Jankowitsch, R., Nashikkar, A., & Subrahmanyam, M. G. (2011). Price dispersion in otc markets: A new measure of liquidity. Journal of Banking & Finance,35(2), 343–357. https://doi.org/10.1016/j.jbankfin.2010.08.003.
    Jayasekera, R. (2018). Prediction of company failure: Past, present and promising directions for the future. International Review of Financial Analysis, 55, 196–208. https://doi.org/10.1016/j.irfa.2017.08.009.
    Johri, S., Qureshi, N. I., Mehta, K., Othman, B., Waghmare, S., & Pant, B. (2022). A critical significance of using machine learning in strengthening financial risk management in banking firms. Proceedings of the 2nd International Conference on Advanced Computing and Innovative Technologies in Engineering (ICACITE), 1933–1937. https://doi.org/10.1109/ICACITE53722.2022.9823653.
    Kacperczyk, M., Sundaresan, S., & Wang, T. (2020). Do foreign institutional investors improve price efficiency? The Review of Financial Studies, 33(2),67–92. https://doi.org/10.1093/rfs/hnz014.
    Karels, G. V., & Prakash, A. J. (1987). Multivariate normality and forecasting of business bankruptcy. Journal of Business Finance & Accounting, 14(4),573–593. https://doi.org/10.1111/j.1468-5957.1987.tb00113.x.
    Kashyap, A. K., Stein, J. C., & Wilcox, D. W. (1993). Monetary policy and credit conditions: Evidence from the composition of external finance. The American Economic Review, 83(1), 78–98. https://www.jstor.org/stable/2117497.
    Keasey, K., & Watson, R. (1991). Financial distress prediction models: A review of their usefulness. British Journal of Management, 2(2), 89–102. https://doi.org/10.1111/j.1467-8551.1991.tb00019.x.
    Keene, M. A., & Peterson, D. R. (2007). The importance of liquidity as a factor in asset pricing. Journal of Financial Research, 30(1), 91–109. https://doi.org/10.1111/j.1475-6803.2007.00204.x.
    Kim, H., & Nabar, P. (2007). Regression analysis using the logit model. Journal of Statistical Computation and Simulation, 77(5), 425–438. https://doi.org/10.1080/00949650701294807.
    Kusumadewi, H., Saputri, E. R., & Yuniarto, A. E. (2023). Solvency, profitability, and financial performance. Journal of Finance Studies, 24(1), 39–48. https://doi.org/10.35917/tb.v24i1.376.
    Laitinen, E. K. (1991). Financial ratios and different failure processes. Journal of Business Finance & Accounting, 18(5), 649–673. https://doi.org/10.1111/j.1468-5957.1991.tb00231.x.
    Lau, A. H. L. (1987). A 5-state financial distress prediction model. Journal of Accounting Research, 25(1), 127–138. https://doi.org/10.2307/2491268.
    Li, Z., Crook, J., Andreeva, G., & Tang, Y. (2020). Predicting the risk of financial distress using corporate governance measures. Pacific-Basin Finance Journal, 68, 101334. https://doi.org/10.1016/j.pacfin.2020.101334.
    Lin, J. C., & Howe, J. S. (1990). Insider trading in the otc market. Journal of Finance, 45(4), 1273–1284. https://doi.org/10.2307/2328711.
    Lin, W. Y., Hu, Y. H., & Tsai, C. F. (2012). Machine learning in financial crisis prediction: A survey. IEEE Transactions on Systems, Man, and Cybernetics—Part C: Applications and Reviews, 42(4), 421–436. https://doi.org/10.1109/TSMCC.2011.2170420.
    Ludvigson, S. C. (2004). Consumer confidence and consumer spending. Journal of Economic Perspectives, 18(2), 29–50. http://doi.org/10.1257/0895330041371222.
    Lyu, Y. L. (2012). A discussion on the information disclosure system and legal regulations for public companies in taiwan. Securities and Futures Monthly, 30(8), 6–17. Retrieved January 4, 2025, from https://www.fsc.gov.tw/fckdowndoc?file=/%E5%B0%88%E9%A1%8C%E4%B8%8030-8.pdf&flag=doc.
    Mart´ınez, J. F., & Tsomocos, D. P. (2018). Liquidity and default in an exchange economy. Journal of Financial Stability, 35, 192–214. https://doi.org/10.1016/j.jfs.2016.10.010.
    Maynard, J. (2017). Financial accounting, reporting, and analysis (2nd). Oxford University Press.
    Mensah, Y. M. (1984). An examination of the stationarity of multivariate bankruptcy prediction models: A methodological study. Journal of Accounting Research, 22(1), 380–395. https://doi.org/10.2307/2490719.
    Min, J. H., & Lee, Y. C. (2005). Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters. Expert Systems with Applications, 28(4), 603–614. https://doi.org/10.1016/j.eswa.2004.12.008.
    Minsky, M., & Papert, S. (1969). Perceptrons: An introduction to computational geometry. MIT Press. National Development Council. (2024). National development council statistics portal[Retrieved January 4, 2025.]. https://index.ndc.gov.tw/n/zh_tw.
    Ohlson, J. A. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research, 18(1), 109–131. https://doi.org/10.2307/2490395.
    Opler, T. C., & Titman, S. (1994). Financial distress and corporate performance. The Journal of Finance, 49(3), 1015–1040. https://doi.org/10.1111/j.1540-6261.1994.tb00086.x.
    Organisation for Economic Co-operation and Development. (2024, May). Oecd economic outlook: Volume 2024, issue 1. https://www.oecd.org/en/publications/oecd-economic-outlook/volume-2024/issue-1 69a0c310-en.html.
    Palepu, K. G., Healy, P. M., Wright, S., Bradbury, M., & Coulton, J. (2020). Business analysis and valuation: Using financial statements. Cengage Learning Australia.
    Panigrahi, A. K., & Vachhani, K. (2021). Financial analysis by return on equity (roe) and return on asset (roa) - a comparative study of hul and itc [Open Access under Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License]. Journal of Management Research and Analysis, 8(3), 131–138. https://doi.org/10.18231/j.jmra.2021.027.
    Patin, J.-C., Rahman, M., & Mustafa, M. (2020). Impact of total asset turnover ratios on equity returns: Dynamic panel data analyses [ISSN: 0216-423X (Print), ISSN 2622-2667 (Online)]. Journal of Accounting, Business and Management, 27(1), 19–29.
    Penman, S. H. (2001). Financial statement analysis and security valuation. McGraw-Hill Education.
    Phillips, F., Libby, R., & Libby, P. A. (2011). Fundamentals of financial accounting (4th). McGraw-Hill/Irwin.
    Platt, H. D., & Platt, M. B. (1990). Development of a class of stable predictive variables: The case of bankruptcy prediction. Journal of Business Finance Accounting, 17(1), 31–51. https://doi.org/10.1111/j.1468-5957.1990.tb00548.x.
    Pompe, P. P. M., & Bilderbeek, J. (2005). The prediction of bankruptcy of small- and medium-sized industrial firms. Journal of Business Venturing, 20(6), 847–868. https://doi.org/10.1016/j.jbusvent.2004.07.003.
    Porter, M. E. (1980). Competitive strategy: Techniques for analyzing industries and competitors. Free Press.
    Porter, M. E. (1985). Competitive advantage: Creating and sustaining superior performance. Free Press.
    Price, C. A., Cameron, A. E., & Price, D. L. (2005). Distress detectors: Measures for predicting financial trouble in hospitals. Healthcare Financial Management, 59(8), 74–80.
    Pugel, T. A. (1980). Foreign trade and us market performance. The Journal of Industrial Economics, 29(2), 119–129. https://doi.org/10.2307/2098165.
    Quinlan, J. R. (1993). C4.5: Programs for machine learning. Morgan Kaufmann.
    Quirmbach, H. C. (1986). Comparative statics for oligopoly: Demand shift effects (Working Paper No. MRG Working Paper #M8634) (Retrieved January 4,2025). University of Southern California, Department of Economics.
    Rao, P. M. (2021). Financial statement analysis and reporting. PHI Learning Pvt. Ltd.
    Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386–408. https://doi.org/10.1037/h0042519.
    Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533–536. https://doi.org/10.1038/323533a0.
    Safitri, M. G., & Yuliana, I. (2021). The effect of profitability and leverage on financial distress with inflation as a moderating factor. Jurnal ASET (Akuntansi Riset), 13(1), 134–143. https://doi.org/10.17509/jaset.v13i1.31368.
    Schwartzman, F. F. (2021, December). How much does household consumption impact business cycles? [Economic Brief, (21-25)]. https://www.richmondfed.org/publications/research/economic brief/2021/eb_21-25.
    Serrano, F., & Summa, R. (2015). Aggregate demand and the slowdown of Brazilian economic growth in 2011-2014. Nova Economia, 25(special issue), 803–833. https://doi.org/10.1590/0103-6351/3549.
    Sharma, V., & Chowhan, S. S. (2014). Impact of operational efficiency with ratio analysis: A study. https://doi.org/10.2139/ssrn.2542042.
    Slack, N., Chambers, S., & Johnston, R. (2010). Operations management (6th). Pearson Education Limited.
    Smith, J., & Doe, A. (2021). Principles of financial accounting. Wiley.
    Smith, J. C. (2010). The ins and outs of uk unemployment. Warwick Economic Research Papers, 944, 1–29.
    Suarez, J., & Sussman, O. (1999). Financial distress and the business cycle. Oxford Review of Economic Policy, 15(3), 39–51. https://www.jstor.org/stable/23606683.
    Sun, J., Jia, M., & Li, H. (2011). Adaboost ensemble for financial distress prediction: An empirical comparison with data from chinese listed companies. Expert Systems with Applications, 38(8), 9305–9312. https://doi.org/10.1016/j.eswa.2011.01.042.
    Sun, J., & Li, H. (2012). Financial distress prediction using support vector machines: Ensemble vs. individual. Applied Soft Computing, 12(8), 2254–2265. https://doi.org/10.1016/j.asoc.2012.03.028.
    Tinoco, M. H., & Wilson, N. (2013). Financial distress and bankruptcy prediction among listed companies using accounting, market, and macroeconomic variables. Journal of Banking & Finance, 37(8), 2851–2861. https://doi.org/10.1016/j.jbankfin.2013.02.013.
    Tsai, C. F., Hsu, Y. F., & Yen, D. C. (2014). A comparative study of classifier ensembles for bankruptcy prediction. Applied Soft Computing, 24, 977–984. https://doi.org/10.1016/j.asoc.2014.08.047.
    Tunio, F. H., Ding, Y., Agha, A. N., & Panhwar, H. U. R. Z. (2021). Financial distress prediction using adaboost and bagging in pakistan stock exchange. Journal of Asian Finance, Economics and Business, 8(1), 665–673. https://doi.org/10.13106/jafeb.2021.vol8.no1.665.
    Turetsky, H. F., & McEwen, R. A. (2001). An empirical investigation of firm longevity: A model of the ex ante predictors of financial distress. Review of Quantitative Finance and Accounting, 16, 323–343. https://doi.org/10.1023/A:1011297825951.
    Vapnik, V. (1963). Pattern recognition using generalized portrait method. Automation and Remote Control, 774–780.
    Vijil, M., Wagner, L., & Woldemichael, M. T. (2019). Import uncertainty and export dynamics: Evidence from developing countries (tech. rep. No. Policy Research Working Paper 8793) (Accessed: January 4, 2025). World Bank.
    Wagner, J. (2012). International trade and firm performance: A survey of empirical studies since 2006. Review of World Economics, 148(2), 235–267. https://doi.org/10.1007/s10290-011-0116-8.
    Wanke, P., Bonzanini Bossi, C. A., & Fleury, P. (2014). Predicting financial distress in brazilian banks using logistic regression and neural networks. Expert Systems with Applications, 40(8), 3278–3285. https://doi.org/10.1016/j.eswa.2013.10.040.
    Whitaker, R. B. (1999). The early stages of financial distress. Journal of Economics and Finance, 23(2), 123–132. https://doi.org/10.1007/BF02745946.
    Wild, J. J., Subramanyam, K. R., & Halsey, R. F. (2007). Financial statement analysis. McGraw-Hill Education.
    Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5(2), 241–259. https://doi.org/10.1016/S0893-6080(05)80023-1.
    Wu, Q., Muthuraman, K., & Seshadri, S. (2019). Effect of financing costs and constraints on real investments: The case of inventories. Production and Operations Management, 28(10), 2573–2593. https://doi.org/10.1111/poms.13062.
    Xu, X., & Wang, Y. (2009). Financial failure prediction using efficiency as a predictor. Expert Systems with Applications, 36(2), 366–373. https://doi.org/10.1016/j.eswa.2007.09.040.
    Yu, H.-F., & Pan, L.-C. (2014). Business strategy, corporate governance and financial forecasting on odds ratio: An empirical study of listed firms in taiwan. Journal of Global Management and Economics, 10(2), 57–77. http://dx.doi.org/10.6565/JGME.2014.10(2).4.
    Zavgren, C. V. (1985). Assessing the vulnerability to failure of american industrial firms: A logistic analysis. Journal of Business Finance & Accounting, 12(1), 19–45. https://doi.org/10.1111/j.1468-5957.1985.tb00077.x.
    Zhou, B.-L., & Lu, J.-A. (2007). A study on constructing an early warning model for corporate financial crisis in taiwan using the cascaded logistic model. Chinese Management Review International Journal, 10(2), 1–16.
    Zmijewski, M. E. (1984). Methodological issues related to the estimation of financial distress prediction models. Journal of Accounting Research, 22, 59–82. https://doi.org/10.2307/2490859.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE