| 研究生: |
隋彥霖 Sui, Yan-Lin |
|---|---|
| 論文名稱: |
希伯特-黃轉換應用於基樁完整性檢測之試驗案例探討 Case Study of Applying Hilbert-Huang Transform in Pile Integrity Test |
| 指導教授: |
倪勝火
Ni, Sheng-Huoo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 221 |
| 中文關鍵詞: | 非破壞檢測 、希伯特-黃轉換 、音波回音法 |
| 外文關鍵詞: | Non-destructive testing, Hilbert-Huang Transform, Sonic echo method |
| 相關次數: | 點閱:34 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣位於環太平洋火山地震帶,地震頻繁且可能引發土壤液化,導致結構物損壞。因此,許多建築物採用基樁作為基礎形式,確保施工品質變得尤為重要。除了政府推行的三級品質管理制度,針對基樁的試驗驗證也不可或缺。非破壞檢測以經濟、迅速及覆蓋範圍廣泛著稱,相較於傳統檢測,基樁的樁載重試驗勞師動眾,因此非破壞檢測在基樁上已行之有年。本研究使用音波回音法之數據,將其以希伯特-黃轉換之自適應噪聲完整集合經驗模態分解法分解,找出有物理意義之本質模態函數,將其利用希伯特轉換得到相角變化資訊,以期辨識樁底與缺陷的回波訊號,找出基樁深度與缺陷位置。在設計缺陷基樁部分,結果顯示在基樁深度誤差小於4%,對於基樁上部缺陷深度誤差小於4%,具有相當可信度,然而基樁下部缺陷因距樁底過近,故無法有效分離,無法判斷位置。在現地基樁部分,相較複數連續小波轉換,基樁深度的檢測誤差小於3%,兩者結果十分接近,說明希伯特-黃轉換法可提供驗證。
Taiwan is located on the Circum-Pacific Seismic Belt, experiencing frequent earthquakes that can cause soil liquefaction, leading to structures damaged. Given that consequence above, many buildings adopt pile foundations to make the assurance of construction quality. Besides the government's implementation of a three-tier quality management system, testing and verification of piles are also necessary. Non-destructive testing (NDT) is known for its cost-effectiveness, speed, and wide coverage. In contrast to traditional testing methods, pile load tests are both workforce and capital consumed, which is why NDT has been widely utilized for pile integrity tests for many years. This study uses data from the sonic echo method, decomposed by Hilbert-Huang transform (HHT) and complete ensemble empirical modes decomposition with adaptive noise (CEEMDAN) to identify intrinsic mode functions (IMFs) with physical significance. By applying the Hilbert Transform to obtain phase angle variation, this study aims to identify the echo signals from the pile bottom and defects, determining the pile depth and defect location.In the designed defective piles, results show a pile depth error of less than 4%, with an error in the upper pile defect depth less than 4%, indicating considerable reliability. However, due to the proximity of defects in the lower pile to the pile bottom, effective separation and location determination were failed in this test. For in-service piles, the depth detection error is less than 3% compared to complex continuous wavelet transforms (CCWT), with very close results, demonstrating that the HHT method provides reliable verification of the pile foundation.
1.王弘義,「基樁應力波非破壞檢測技術之比較評估」,碩士論文,朝陽科技大學營建工程學系(2003)。
2.李允仲,「音波回音法應用於基樁完整性檢測之實驗研究」,碩士論文,國立成功大學土木工程學研究所(2008)。
3.李吉龍,「時頻分析法應用於基樁及版之非破壞檢測評估」,博士論文,國立成功學土木工程研究所(2018)。
4.吳天珦,「穩態振動法應用於探測基樁長度之實驗研究」,碩士論文,國立成功大學土木工程研究所(2009)。
5.林雨婷、馮正一,「應用希伯特黃轉換於表面波譜法之分析」,水土保持學報,41卷2期,pp. 137-146 (2010)。
6.倪勝火,羅國峯,「小波轉換法應用於基樁回應法檢測之分析研究」,檢測科技,Vol. 19, No. 1, pp.4-15(2001)。
7.郭宸瑜,「應力波應用於非破壞檢測之試驗案例探討」,碩士論文,國立成功大學土木工程研究所(2023)
8.許琍婷,「希伯特黃轉換於音波回音法之應用」,碩士論文,國立成功大學土木工程研究所(2010)。
9.陳乙豪,「音波回音法與脈波反應法應用於基樁非破壞性檢測之可行性分析」,碩士論文,國立成功大學土木工程研究所(2015)。
10.陳振國,「總體經驗模態法應用於基樁完整性檢測之研究」,碩士論文,國立成功學土木工程研究所(2017)。
11.楊玉章,「應用離散小波轉換及複數連續小波轉換於基樁完整性檢測之研究」,博士論文,國立成功大學土木工程學研究所(2017)。
12.黃烟宏,「應力波應用於樁基礎完整性檢測技術之評估」,博士論文,國立成功大學土木工程學研究所(2011)。
13.廖述濤,「基樁的脈波反應測試及力學導納分析」檢測科技,14卷,2期pp. 94-103 (1996)。
14.潘貝咏,「希伯特-黃轉換於含樁帽基樁非破壞檢測之應用」,碩士論文,國立成功學土木工程研究所(2015)。
15.劉奕,「穩態震動法於探測含樁帽基樁長度之實驗研究」,碩士論文,國立成功大學土木工程研究所(2011)。
16.賴勇裕,「複數小波轉換於偵測預力樁長度之案例研究」,碩士論文,國立成功學土木工程研究所(2017)。
17.謝承展,「以機器學習與主成分分析進行敲擊回音本質模態函數之分類」,碩士論文,國立台灣大學工學院應用力學研究所(2022)
18.American Society for Testing and Materials, (ASTM), “Standard test method for low strain impact integrity testing of deep foundations.” ASTM. Standard D5882 – 16, (2016)
19.Bolt, B.A., Earthquake and Geological Discovery, Scientific American Library, New York (1993)
20.Colominas, M.A., Schlotthauer, G., Torres, M. E., Patrick Flandrin, “Noise-assisted EMD methods in action.” Advances in Adaptive Data Analysis, Vol. 4, No. 4, (2012)
21.Colominas, M.A., Schlotthauer, G., Torres, M. E., “Improved complete ensemble EMD: a suitable tool for biomedicalsignal processing.” Biomedical Signal Processing and Control, Vol. 14, pp. 19–29. (2014)
22.Colla, C., and Lausch, R. “Influence of source frequency on impact-echo data quality for testing concrete structures.” NDT & E International, Vol. 36, No. 4, pp. 203-213 (2003).
23.Davis, A.G. “From theory to field experience with the non–destructive vibration testing of piles.” Proceedings, Institute of Civil Engineering, Part 2, 57, pp. 571–593 (1974).
24.Higgs, J.S., “Integrity testing of concrete piles by shock method.” Concrete, Oct., pp. 31-33. (1979)
25.Huang, N.E., and Wu, Z., “Ensemble empirical mode decomposition: a noise assisted data analysis method.” Center for Ocean-Land- Atmosphere Studies, Technical Report Series, Vol. 193, No. 173. (2005)
26.Huang, N.E., and Wu, Z., “Ensemble empirical mode decomposition: a noise assisted data analysis method. ”Advance in Adaptive Data Analysis, Vol. 1, No. 1, pp. 1-41. (2009)
27.Huang, N.E., Shen, Samuel S.P., Hilbert-Huang Transform and Its Applications, World Scientific Inc., New Jersey. (2005)
28.Huang, N.E., Shen, Z., Long, S.R,. Wu, M.C., Shin, H.H., Zheng, Q.,Yen, N.-C., Tung, C.C., and Liu, H.H., “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis.” Proceedings of the Royal Society of London. A, Vol. 454, pp. 903-995. (1998)
29.Lamb, H. “On the propagation of tremors over the surface of an elastic solid.” Philosophical Transactions of the Royal Society, London, Ser. A, Vol. 203, pp. 1-42. (1904)
30.Lin, Y., Sanalone, M., and Carino, N.J., “Impact echo response of concrete shafts.” Geotechnical Testing Journal, Vol. 14, No. 2, pp. 121-137. (1991)
31.Lin, C.C., Liu, P.L., and Yeh, P.L., “Application of empirical mode decomposition in the impact-echo test.” NDT&E international, Vol. 42, pp. 589-598. (2009)
32.PCB Piezotronics, Short-sledge Impulse Hammer w/force sensor & tips, 0 to 5k lbf, 1 mV/lbf (0.23 mV/N), 2.4-lb head Installation and Operating Manual, PCB Piezotronics, Inc., United States of America. (2024)
33.Paquet, J., and Briard, M., “Non destructif des pieux en béton (Nondestructive Control of Concrete Piles).” Ann Inst Tech Bâtim, (in French)., No. 337, pp. 50-80. (1976)
34.Rausche, F., Likins, G.E., and Hussein, M., “Pile integrity by low and high strain impacts.” Proceedings of the 3rd International Conference on the Application of Stress-Wave Theory to Piles, Ottawa, pp. 44-45. (1988)
35.Richart Jr, F.E., Hall Jr, J.R., and Woods, R.D., Vibrations of soils and Foundations, Prentice-Hall, Inc. (1970)
36.TNO Building and Construction Research, Foundation Pile Diagnostic System: Sonic Integrity Testing, Netherland. (1997)
37.Whitehurst, E.A.,” Soniscope Tests Concrete Structures.” Journal of the America Concrete Institution, Vol. 47, No. 2, pp. 433-444. (1951)
38.Yeh, J.R., Shieh, J.S., and Huang, N.E. “Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method.” Advances in Adaptive Data Analysis, Vol. 2, No. 2, pp. 135-156. (2010)