簡易檢索 / 詳目顯示

研究生: 黃彥嘉
Huang, Yan-Jia
論文名稱: 以第一原理研究氫氣還原赤鐵礦及螢石結構氧化物於產氧反應之催化活性
First-Principles Study on Reduction Reaction of Hematite with Hydrogen as Reducing Agent and Catalytic Activity of Fluorite Structured Oxides toward Oxygen Evolution Reaction
指導教授: 蘇彥勳
Su, Yen-Hsun
共同指導教授: 關肇正
kaun, Chao-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 109
中文關鍵詞: 赤鐵礦第一原理計算還原反應機器學習產氧反應
外文關鍵詞: hematite, first-principles calculation, reduction, machine learning, oxygen evolution reaction
相關次數: 點閱:22下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以第一原理計算探討以氫氣還原赤鐵礦的反應及結合基因演算法的機器學習方式研究螢石結構氧化物用於產氧反應的催化活性。
    在以氫氣還原赤鐵礦的部分,我們以三種不同termination (O-termination, Fe-termination, (Fe,O)-termiantion)的赤鐵礦(0001)面作為反應平面,經由氫分子吸附於表面氧原子後再將鐵原子還原離開赤鐵礦二步驟完成還原反應,計算在各步驟之能量變化、氫分子吸附後之表面原子扭曲程度、電荷分布及表面氧原子p能帶中心。結果顯示在氫分子吸附後之表面鐵原子扭曲程度越大者越易使鐵原子脫離赤鐵礦表面而還原;而欲還原之鐵原子其與周圍原子之電荷交換越少者代表其與周圍原子之鍵結較弱,所以也較易從赤鐵礦表面還原出來。另外,氫分子於赤鐵礦(0001)面的吸附能也與其表面氧原子之p能帶中心呈正相關的現象,從能量變化的結果也可判斷,Fe-termination的赤鐵礦(0001)面是最適合用作以氫氣還原赤鐵礦的平面。
    在第一原理結合基因演算法計算螢石結構氧化物用於產氧反應的研究中,首先以二氧化鈰為基礎選出3個平面進行產氧反應計算,發現(110)面是3者中產氧反應活性最高的平面,於是以此為基礎建構Ce0.5Zr0.5O2、Ce1/3Hf1/3Zr1/3O2、Ce0.25Hf0.25Sn0.25Zr0.25O2及Ce0.2Hf0.2Sn0.2Ti0.2Zr0.2O2四種螢石結構氧化物的(110)面,利用基因演算法計算在不同系統、不同反應吸附點位或不同吸附點位周圍原子排列下之產氧反應催化活性,藉此方法,我們得知了在不同系統中,反應過電位最低的情形皆發生於以表面鈰原子為吸附點位時,因此鈰原子可視為此類螢石結構氧化物用於產氧反應的活性位點;而在各系統中之過電位最低的情形比較下,我們可以發現在Ce0.25Hf0.25Sn0.25Zr0.25O2系統中,過電位最低值相較於其他三者皆較低,代表Ce0.25Hf0.25Sn0.25Zr0.25O2是這四種螢石結構氧化物中最適合做為產氧反應催化材料的系統。

    This research is classified into two parts, 1. reduction reaction of hematite (α-Fe2O3) using molecule hydrogen as reducing agent, 2. oxygen evolution reaction (OER) catalyzed by fluorite-structured oxides, which were conducted by first-principles calculation based on density functional theory. In the first part, the results shown that α-Fe2O3(0001) surface with Fe-termination is the most suitable one toward the reduction reaction reduced by hydrogen since the energy barriers of each reaction mode are smaller than those of other modes. In the second part, first-principles calculation was combined with genetic algorithm neural networks. 4 fluorite-structured oxides (Ce0.5Zr0.5O2 (CZO), Ce1/3Hf1/3Zr1/3O2 (CHZO), Ce0.25Hf0.25Sn0.25Zr0.25O2 (CHSZO) and Ce0.2Hf0.2Sn0.2Ti0.2Zr0.2O2 (CHSTZO)) based on CeO2 were constructed to perform OER and discuss the catalytic properties under different systems, adsorption sites and neighboring atoms of adsorption site. We observed that in each system, the lowest overpotentials all happened when surface Ce atoms act as adsorption sites. Besides, Ce0.25Hf0.25Sn0.25Zr0.25O2 shows the best catalytic performance toward OER compared to other systems.

    摘要 I 誌謝 X 目錄 X 表目錄 XIV 圖目錄 XV 第一章 緒論 1 1-1 前言 1 1-2 研究動機 1 第二章 基礎理論及文獻回顧 3 2-1 基礎理論 3 2-1.1 第一原理計算與應用 3 2-1.2 薛丁格方程式(Schrödinger equation) 3 2-1.3 多電子系統與Hartree-Fock 近似 6 2-1.4 密度泛函理論(Density Functional Theory, DFT) 7 交換關聯函數 (Exchange-correlation function) 12 局域密度近似法(Local density approximation, LDA) 12 2-1.6 布洛赫定理(Bloch’ s theorem)及能帶結構 13 2-1.7 贋勢法(Pseudopotential method) 16 2-1.8 能態密度(Density of states) 17 2-2 赤鐵礦還原反應文獻回顧 19 2-2.1 赤鐵礦 (Hematite) 19 2-2.2 以氫氣還原赤鐵礦 20 2-3高熵氧化物文獻回顧 23 2-3.1 高熵材料 (High entropy materials, HEMs) 23 高熵效應(High-entropy effect) 23 遲緩擴散效應(Sluggish diffusion effect) 24 嚴重晶格扭曲效應(Severe-lattice-distortion effect) 24 雞尾酒效應(Cocktail effect) 25 2-3.2 螢石結構高熵氧化物 (Fluorite-structured high entropy oxides) 25 2-3.3 以第一原理研究高熵材料 28 2-4 機器學習 29 2-5 產氧反應 (Oxygen evolution reaction, OER) 34 第三章 計算軟體介紹與計算參數 37 3-1 計算軟體介紹 37 3-2 計算參數 38 第四章 以氫氣還原赤鐵礦 (α-Fe2O3)計算結果與分析 40 4-1 赤鐵礦基礎性質及表面計算 40 4-2 氫氣吸附赤鐵礦之計算 47 4-3 鐵原子移除之計算 59 4-4 赤鐵礦還原反應能障計算 60 第五章 螢石結構氧化物產氧反應計算結果與分析 68 5-1 螢石結構氧化物產氧反應模型與機器學習研究方法 69 5-1.1 產氧反應 69 5-1.2 機器學習參數 70 5-3 二氧化鈰之產氧反應計算 71 5-4 第一次訓練、推論及驗證 78 5-4.1 第一次訓練 78 5-4.2 第一次推論 81 5-4.3 第一次驗證 83 5-5 第二次訓練、推論及驗證 84 5-5.1 第二次訓練 84 5-5.2 第二次推論 86 5-5.3 第二次驗證 87 第六章 結論 94 6-1 以氫氣還原赤鐵礦 (α-Fe2O3) 94 6-2 機器學習結合第一原理分析螢石結構氧化物之產氧反應活性 95 參考文獻 96

    [1] G. Kresse and J. Hafner, "Ab initio molecular dynamics for liquid metals," Physical Review B, vol. 47, no. 1, pp. 558-561, 01/01/ 1993, doi: 10.1103/PhysRevB.47.558.
    [2] G. Kresse and J. Furthmüller, "Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set," Physical Review B, vol. 54, no. 16, pp. 11169-11186, 10/15/ 1996, doi: 10.1103/PhysRevB.54.11169.
    [3] G. Kresse and D. Joubert, "From ultrasoft pseudopotentials to the projector augmented-wave method," Physical Review B, vol. 59, no. 3, pp. 1758-1775, 01/15/ 1999, doi: 10.1103/PhysRevB.59.1758.
    [4] J. P. Perdew et al., "Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation," Physical Review B, vol. 46, no. 11, pp. 6671-6687, 09/15/ 1992, doi: 10.1103/PhysRevB.46.6671.
    [5] J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple," (in eng), Phys Rev Lett, vol. 77, no. 18, pp. 3865-3868, Oct 28 1996, doi: 10.1103/PhysRevLett.77.3865.
    [6] M. W. a. L. N. S. H. Vosko, "Structural and Electronic Properties of Bixo3 (X = Mn, Fe, Cr)," Can. J. Phys. , vol. 58, p. 1200 1980.
    [7] P. E. Blöchl, "Projector augmented-wave method," Physical Review B, vol. 50, no. 24, pp. 17953-17979, 12/15/ 1994, doi: 10.1103/PhysRevB.50.17953.
    [8] J. Zieliński, I. Zglinicka, L. Znak, and Z. Kaszkur, "Reduction of Fe2O3 with hydrogen," Applied Catalysis A: General, vol. 381, no. 1, pp. 191-196, 2010/06/15/ 2010, doi: https://doi.org/10.1016/j.apcata.2010.04.003.
    [9] M. V. C. Sastri, R. P. Viswanath, and B. Viswanathan, "Studies on the reduction of iron oxide with hydrogen," International Journal of Hydrogen Energy, vol. 7, no. 12, pp. 951-955, 1982/01/01/ 1982, doi: https://doi.org/10.1016/0360-3199(82)90163-X.
    [10] H. Chen et al., "Entropy-stabilized metal oxide solid solutions as CO oxidation catalysts with high-temperature stability," Journal of Materials Chemistry A, 10.1039/C8TA01772G vol. 6, no. 24, pp. 11129-11133, 2018, doi: 10.1039/C8TA01772G.
    [11] Z. Zhang et al., "Mechanochemical Nonhydrolytic Sol–Gel-Strategy for the Production of Mesoporous Multimetallic Oxides," Chemistry of Materials, vol. 31, no. 15, pp. 5529-5536, 2019/08/13 2019, doi: 10.1021/acs.chemmater.9b01244.
    [12] F. Waag et al., "Kinetically-controlled laser-synthesis of colloidal high-entropy alloy nanoparticles," RSC Advances, 10.1039/C9RA03254A vol. 9, no. 32, pp. 18547-18558, 2019, doi: 10.1039/C9RA03254A.
    [13] N. Qiu, H. Chen, Z. Yang, S. Sun, Y. Wang, and Y. Cui, "A high entropy oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O) with superior lithium storage performance," Journal of Alloys and Compounds, vol. 777, pp. 767-774, 2019/03/10/ 2019, doi: https://doi.org/10.1016/j.jallcom.2018.11.049.
    [14] M. W. Glasscott et al., "Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis," Nature Communications, vol. 10, no. 1, p. 2650, 2019/06/14 2019, doi: 10.1038/s41467-019-10303-z.
    [15] Z. Jin et al., "Nanoporous Al-Ni-Co-Ir-Mo High-Entropy Alloy for Record-High Water Splitting Activity in Acidic Environments," (in eng), Small, vol. 15, no. 47, p. e1904180, Nov 2019, doi: 10.1002/smll.201904180.
    [16] W. Dai, T. Lu, and Y. Pan, "Novel and promising electrocatalyst for oxygen evolution reaction based on MnFeCoNi high entropy alloy," Journal of Power Sources, vol. 430, pp. 104-111, 2019/08/01/ 2019, doi: https://doi.org/10.1016/j.jpowsour.2019.05.030.
    [17] T. Wang, H. Chen, Z. Yang, J. Liang, and S. Dai, "High-Entropy Perovskite Fluorides: A New Platform for Oxygen Evolution Catalysis," Journal of the American Chemical Society, vol. 142, no. 10, pp. 4550-4554, 2020/03/11 2020, doi: 10.1021/jacs.9b12377.
    [18] F. Okejiri, Z. Zhang, J. Liu, M. Liu, S. Yang, and S. Dai, "Room-Temperature Synthesis of High-Entropy Perovskite Oxide Nanoparticle Catalysts through Ultrasonication-Based Method," (in eng), ChemSusChem, vol. 13, no. 1, pp. 111-115, Jan 9 2020, doi: 10.1002/cssc.201902705.
    [19] H. Chen, N. Qiu, B. Wu, Z. Yang, S. Sun, and Y. Wang, "A new spinel high-entropy oxide (Mg0.2Ti0.2Zn0.2Cu0.2Fe0.2)3O4 with fast reaction kinetics and excellent stability as an anode material for lithium ion batteries," RSC Advances, 10.1039/D0RA00255K vol. 10, no. 16, pp. 9736-9744, 2020, doi: 10.1039/D0RA00255K.
    [20] T. X. Nguyen, J. Patra, J.-K. Chang, and J.-M. Ting, "High entropy spinel oxide nanoparticles for superior lithiation–delithiation performance," Journal of Materials Chemistry A, 10.1039/D0TA04844E vol. 8, no. 36, pp. 18963-18973, 2020, doi: 10.1039/D0TA04844E.
    [21] X. Zhao, Z. Xue, W. Chen, Y. Wang, and T. Mu, "Eutectic Synthesis of High-Entropy Metal Phosphides for Electrocatalytic Water Splitting," (in eng), ChemSusChem, vol. 13, no. 8, pp. 2038-2042, Apr 21 2020, doi: 10.1002/cssc.202000173.
    [22] E. Schrödinger, "An Undulatory Theory of the Mechanics of Atoms and Molecules," Physical Review, vol. 28, no. 6, pp. 1049-1070, 12/01/ 1926, doi: 10.1103/PhysRev.28.1049.
    [23] V. Fock, "Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems," Zeitschrift für Physik, vol. 61, no. 1-2, pp. 126-148, 1930.
    [24] J. C. Slater, "A simplification of the Hartree-Fock method," Physical review, vol. 81, no. 3, p. 385, 1951.
    [25] E. Fermi, "Un metodo statistico per la determinazione di alcune priorieta dell’atome," Rend. Accad. Naz. Lincei, vol. 6, no. 32, pp. 602-607, 1927.
    [26] L. H. Thomas, "The calculation of atomic fields," in Mathematical Proceedings of the Cambridge Philosophical Society, 1927, vol. 23, no. 5: Cambridge University Press, pp. 542-548.
    [27] P. Hohenberg and W. Kohn, "Inhomogeneous electron gas," Physical review, vol. 136, no. 3B, p. B864, 1964.
    [28] W. Kohn and L. J. Sham, "Self-consistent equations including exchange and correlation effects," Physical review, vol. 140, no. 4A, p. A1133, 1965.
    [29] I. N. Levine, D. H. Busch, and H. Shull, Quantum chemistry. Pearson Prentice Hall Upper Saddle River, NJ, 2009.
    [30] D. M. Ceperley and B. J. Alder, "Ground state of the electron gas by a stochastic method," Physical review letters, vol. 45, no. 7, p. 566, 1980.
    [31] A. D. Becke, "Density-functional exchange-energy approximation with correct asymptotic behavior," Physical review A, vol. 38, no. 6, p. 3098, 1988.
    [32] J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized gradient approximation made simple," Physical review letters, vol. 77, no. 18, p. 3865, 1996.
    [33] M. C. Payne, M. P. Teter, D. C. Allan, T. Arias, and a. J. Joannopoulos, "Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients," Rev. Mod. Phys., vol. 64, no. 4, p. 1045, 1992.
    [34] X. Huang, S. K. Ramadugu, and S. E. Mason, "Surface-Specific DFT + U Approach Applied to α-Fe2O3(0001)," The Journal of Physical Chemistry C, vol. 120, no. 9, pp. 4919-4930, 2016/03/10 2016, doi: 10.1021/acs.jpcc.5b12144.
    [35] S. S. Shinde, R. A. Bansode, C. H. Bhosale, and K. Y. Rajpure, "Physical properties of hematite ± -Fe 2 O 3 thin films: application to photoelectrochemical solar cells," Journal of Semiconductors, vol. 32, p. 013001, 2011.
    [36] J. Yu, X. Yu, B. Huang, X. Zhang, and Y. Dai, "Hydrothermal Synthesis and Visible-light Photocatalytic Activity of Novel Cage-like Ferric Oxide Hollow Spheres," Crystal Growth & Design, vol. 9, no. 3, pp. 1474-1480, 2009/03/04 2009, doi: 10.1021/cg800941d.
    [37] G. Liu et al., "Micro/nanostructured α-Fe2O3 spheres: synthesis, characterization, and structurally enhanced visible-light photocatalytic activity," Journal of Materials Chemistry, 10.1039/C2JM31586F vol. 22, no. 19, pp. 9704-9713, 2012, doi: 10.1039/C2JM31586F.
    [38] M. Armand and J. M. Tarascon, "Building better batteries," (in eng), Nature, vol. 451, no. 7179, pp. 652-7, Feb 7 2008, doi: 10.1038/451652a.
    [39] J. M. Tarascon and M. Armand, "Issues and challenges facing rechargeable lithium batteries," Nature, vol. 414, no. 6861, pp. 359-367, 2001/11/01 2001, doi: 10.1038/35104644.
    [40] J. S. Chen, L. A. Archer, and X. Wen Lou, "SnO2 hollow structures and TiO2 nanosheets for lithium-ion batteries," Journal of Materials Chemistry, 10.1039/C0JM04163G vol. 21, no. 27, pp. 9912-9924, 2011, doi: 10.1039/C0JM04163G.
    [41] J. S. Chen, T. Zhu, X. H. Yang, H. G. Yang, and X. W. Lou, "Top-Down Fabrication of α-Fe2O3 Single-Crystal Nanodiscs and Microparticles with Tunable Porosity for Largely Improved Lithium Storage Properties," Journal of the American Chemical Society, vol. 132, no. 38, pp. 13162-13164, 2010/09/29 2010, doi: 10.1021/ja1060438.
    [42] Z. Wang, D. Luan, S. Madhavi, C. M. Li, and X. W. D. Lou, "α-Fe2O3 nanotubes with superior lithium storage capability," Chemical communications, vol. 47 28, pp. 8061-3, 2011.
    [43] J. S. Chen, C. M. Li, W. W. Zhou, Q. Y. Yan, L. A. Archer, and X. W. Lou, "One-pot formation of SnO2 hollow nanospheres and α-Fe2O3@SnO2 nanorattles with large void space and their lithium storage properties," Nanoscale, 10.1039/B9NR00102F vol. 1, no. 2, pp. 280-285, 2009, doi: 10.1039/B9NR00102F.
    [44] O. Hod, J. E. Peralta, and G. E. Scuseria, "Edge effects in finite elongated graphene nanoribbons," Physical Review B, vol. 76, no. 23, p. 233401, 12/03/ 2007, doi: 10.1103/PhysRevB.76.233401.
    [45] P. Shemella, Y. Zhang, M. Mailman, P. M. Ajayan, and S. K. Nayak, "Energy gaps in zero-dimensional graphene nanoribbons," Applied Physics Letters, vol. 91, no. 4, p. 042101, 2007, doi: 10.1063/1.2761531.
    [46] F. Schwierz, "Graphene transistors," Nature Nanotechnology, vol. 5, no. 7, pp. 487-496, 2010/07/01 2010, doi: 10.1038/nnano.2010.89.
    [47] J. Chen, L. Xu, W. Li, and X. Gou, "α-Fe2O3 Nanotubes in Gas Sensor and Lithium-Ion Battery Applications," Advanced Materials, vol. 17, no. 5, pp. 582-586, 2005, doi: https://doi.org/10.1002/adma.200401101.
    [48] X. Hu, J. C. Yu, J. Gong, Q. Li, and G. Li, "α-Fe2O3 Nanorings Prepared by a Microwave-Assisted Hydrothermal Process and Their Sensing Properties," Advanced Materials, vol. 19, no. 17, pp. 2324-2329, 2007, doi: https://doi.org/10.1002/adma.200602176.
    [49] M. Mishra and D.-M. Chun, "α-Fe2O3 as a photocatalytic material: A review," Applied Catalysis A: General, vol. 498, pp. 126-141, 2015/06/05/ 2015, doi: https://doi.org/10.1016/j.apcata.2015.03.023.
    [50] T. Usui, H. Kawabata, H. Ono-Nakazato, and A. Kurosaka, "Fundamental Experiments on the H<SUB>2</SUB> Gas Injection into the Lower Part of a Blast Furnace Shaft," ISIJ International, vol. 42, no. Suppl, pp. S14-S18, 2002, doi: 10.2355/isijinternational.42.Suppl_S14.
    [51] C. Yilmaz, J. Wendelstorf, and T. Turek, "Modeling and simulation of hydrogen injection into a blast furnace to reduce carbon dioxide emissions," Journal of Cleaner Production, vol. 154, pp. 488-501, 2017.
    [52] Q. Lyu, Y. Qie, X. Liu, C. Lan, J. Li, and S. Liu, "Effect of hydrogen addition on reduction behavior of iron oxides in gas-injection blast furnace," Thermochimica Acta, vol. 648, pp. 79-90, 2017/02/10/ 2017, doi: https://doi.org/10.1016/j.tca.2016.12.009.
    [53] J. A. d. Castro, C. Takano, and J.-i. Yagi, "A theoretical study using the multiphase numerical simulation technique for effective use of H2 as blast furnaces fuel," Journal of materials research and technology, vol. 6, pp. 258-270, 2017.
    [54] M. Bernasowski, "Theoretical Study of the Hydrogen Influence on Iron Oxides Reduction at the Blast Furnace Process," steel research international, https://doi.org/10.1002/srin.201300141 vol. 85, no. 4, pp. 670-678, 2014/04/01 2014, doi: https://doi.org/10.1002/srin.201300141.
    [55] W. Jozwiak, E. Kaczmarek, T. Maniecki, W. Ignaczak, and W. Maniukiewicz, "Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres," Applied Catalysis A-general - APPL CATAL A-GEN, vol. 326, pp. 17-27, 06/30 2007, doi: 10.1016/j.apcata.2007.03.021.
    [56] L. v. Bogdandy and H. J. Engell, "Die Reduktion der Eisenerze : Wissenschaftliche Grundlagen und technische Durchführung," 1967.
    [57] L. Zhi-feng, Y. Gao, G.-M. Cao, and Z. Liu, "High-efficiency reduction behavior for the oxide scale formed on hot-rolled steel in a mixed atmosphere of hydrogen and argon," Journal of Materials Science, vol. 55, 02/01 2020, doi: 10.1007/s10853-019-04027-0.
    [58] B. Cantor, I. T. H. Chang, P. Knight, and A. J. B. Vincent, "Microstructural development in equiatomic multicomponent alloys," Materials Science and Engineering: A, vol. 375-377, pp. 213-218, 2004/07/01/ 2004, doi: https://doi.org/10.1016/j.msea.2003.10.257.
    [59] J. W. Yeh et al., "Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes," Advanced Engineering Materials, https://doi.org/10.1002/adem.200300567 vol. 6, no. 5, pp. 299-303, 2004/05/01 2004, doi: https://doi.org/10.1002/adem.200300567.
    [60] M.-H. Tsai and J.-W. Yeh, "High-Entropy Alloys: A Critical Review," Materials Research Letters, vol. 2, no. 3, pp. 107-123, 2014/07/03 2014, doi: 10.1080/21663831.2014.912690.
    [61] A. Faghri and Y. Zhang, "2 - THERMODYNAMICS OF MULTIPHASE SYSTEMS," in Transport Phenomena in Multiphase Systems, A. Faghri and Y. Zhang Eds. Boston: Academic Press, 2006, pp. 107-176.
    [62] K.-H. Cheng, C.-H. Lai, S.-J. Lin, and J.-W. Yeh, "Recent progress in multi-element alloy and nitride coatings sputtered from high-entropy alloy targets," European Journal of Control - EUR J CONTROL, vol. 31, pp. 723-736, 12/31 2006, doi: 10.3166/acsm.31.723-736.
    [63] L. Xu, H. Wang, L. Su, D. Lu, K. Peng, and H. Gao, "A new class of high-entropy fluorite oxides with tunable expansion coefficients, low thermal conductivity and exceptional sintering resistance," Journal of the European Ceramic Society, vol. 41, no. 13, pp. 6670-6676, 2021/10/01/ 2021, doi: https://doi.org/10.1016/j.jeurceramsoc.2021.05.043.
    [64] C.-Y. Zhou, D. Wang, and X.-Q. Gong, "A DFT+U revisit of reconstructed CeO2(100) surfaces: structures, thermostabilities and reactivities," Physical Chemistry Chemical Physics, 10.1039/C9CP03408K vol. 21, no. 36, pp. 19987-19994, 2019, doi: 10.1039/C9CP03408K.
    [65] Y.-L. Song, L.-L. Yin, J. Zhang, P. Hu, X.-Q. Gong, and G. Lu, "A DFT+U study of CO oxidation at CeO2(110) and (111) surfaces with oxygen vacancies," Surface Science, vol. 618, pp. 140-147, 2013/12/01/ 2013, doi: https://doi.org/10.1016/j.susc.2013.09.001.
    [66] C. Zhang, A. Michaelides, and S. J. Jenkins, "Theory of gold on ceria," Physical Chemistry Chemical Physics, 10.1039/C0CP01123A vol. 13, no. 1, pp. 22-33, 2011, doi: 10.1039/C0CP01123A.
    [67] M. Ozawa, M. Hattori, and T. Yamaguchi, "Thermal stability of ceria catalyst on alumina and its surface oxygen storage capacity," Journal of Alloys and Compounds, vol. 451, no. 1, pp. 621-623, 2008/02/28/ 2008, doi: https://doi.org/10.1016/j.jallcom.2007.04.076.
    [68] F. Jiang et al., "Insights into the Influence of CeO2 Crystal Facet on CO2 Hydrogenation to Methanol over Pd/CeO2 Catalysts," ACS Catalysis, vol. 10, no. 19, pp. 11493-11509, 2020/10/02 2020, doi: 10.1021/acscatal.0c03324.
    [69] H. Ha, S. Yoon, K. An, and H. Y. Kim, "Catalytic CO Oxidation over Au Nanoparticles Supported on CeO2 Nanocrystals: Effect of the Au–CeO2 Interface," ACS Catalysis, vol. 8, no. 12, pp. 11491-11501, 2018/12/07 2018, doi: 10.1021/acscatal.8b03539.
    [70] S. Cao, B. Zou, J. Yang, J. Wang, and H. Feng, "Hollow CuO–CeO2 Nanospheres for an Effectively Catalytic Annulation/A3-Coupling Reaction Sequence," ACS Applied Nano Materials, 2022/07/28 2022, doi: 10.1021/acsanm.2c02666.
    [71] J. Qian et al., "Enhanced Photocatalytic H2 Production on Three-Dimensional Porous CeO2/Carbon Nanostructure," ACS Sustainable Chemistry & Engineering, vol. 6, no. 8, pp. 9691-9698, 2018/08/06 2018, doi: 10.1021/acssuschemeng.8b00596.
    [72] F. Cao et al., "Size-Controlled Synthesis of Pd Nanocatalysts on Defect-Engineered CeO2 for CO2 Hydrogenation," ACS Applied Materials & Interfaces, vol. 13, no. 21, pp. 24957-24965, 2021/06/02 2021, doi: 10.1021/acsami.1c05722.
    [73] N. Wetchakun et al., "BiVO4/CeO2 Nanocomposites with High Visible-Light-Induced Photocatalytic Activity," ACS Applied Materials & Interfaces, vol. 4, no. 7, pp. 3718-3723, 2012/07/25 2012, doi: 10.1021/am300812n.
    [74] Z. Su et al., "Boosting the Catalytic Performance of CeO2 in Toluene Combustion via the Ce–Ce Homogeneous Interface," Environmental Science & Technology, vol. 55, no. 18, pp. 12630-12639, 2021/09/21 2021, doi: 10.1021/acs.est.1c03999.
    [75] J. Zhang, Y. Cao, C.-A. Wang, and R. Ran, "Design and Preparation of MnO2/CeO2–MnO2 Double-Shelled Binary Oxide Hollow Spheres and Their Application in CO Oxidation," ACS Applied Materials & Interfaces, vol. 8, no. 13, pp. 8670-8677, 2016/04/06 2016, doi: 10.1021/acsami.6b00002.
    [76] R. Djenadic et al., "Multicomponent equiatomic rare earth oxides," Materials Research Letters, vol. 5, no. 2, pp. 102-109, 2017/03/04 2017, doi: 10.1080/21663831.2016.1220433.
    [77] A. Chen, Y. Chen, and Z. Chen, "Three-Dimensional Ordered CeO2 Hollow Spheres (3DOHSs-CeO2) from Polymethylmethacrylate/CeO2 Core/Shell Microsphere Colloidal Crystals," Journal of Inorganic and Organometallic Polymers and Materials, vol. 26, no. 1, pp. 69-74, 2016/01/01 2016, doi: 10.1007/s10904-015-0282-6.
    [78] K. Chen et al., "A five-component entropy-stabilized fluorite oxide," Journal of the European Ceramic Society, vol. 38, no. 11, pp. 4161-4164, 2018/09/01/ 2018, doi: https://doi.org/10.1016/j.jeurceramsoc.2018.04.063.
    [79] M. Anandkumar, S. Bhattacharya, and A. S. Deshpande, "Low temperature synthesis and characterization of single phase multi-component fluorite oxide nanoparticle sols," RSC Advances, 10.1039/C9RA04636D vol. 9, no. 46, pp. 26825-26830, 2019, doi: 10.1039/C9RA04636D.
    [80] D. Wu et al., "On the electronic structure and hydrogen evolution reaction activity of platinum group metal-based high-entropy-alloy nanoparticles," Chemical Science, 10.1039/D0SC02351E vol. 11, no. 47, pp. 12731-12736, 2020, doi: 10.1039/D0SC02351E.
    [81] J. Hu et al., "A Density Functional Theory Study of the Hydrogen Absorption in High Entropy Alloy TiZrHfMoNb," Inorganic Chemistry, vol. 59, no. 14, pp. 9774-9782, 2020/07/20 2020, doi: 10.1021/acs.inorgchem.0c00989.
    [82] K. T. Schütt, F. Arbabzadah, S. Chmiela, K. R. Müller, and A. Tkatchenko, "Quantum-chemical insights from deep tensor neural networks," Nature communications, vol. 8, no. 1, pp. 1-8, 2017.
    [83] K. T. Schütt, H. E. Sauceda, P.-J. Kindermans, A. Tkatchenko, and K.-R. Müller, "Schnet–a deep learning architecture for molecules and materials," The Journal of Chemical Physics, vol. 148, no. 24, p. 241722, 2018.
    [84] M. S. Chen, T. J. Zuehlsdorff, T. Morawietz, C. M. Isborn, and T. E. Markland, "Exploiting machine learning to efficiently predict multidimensional optical spectra in complex environments," The Journal of Physical Chemistry Letters, vol. 11, no. 18, pp. 7559-7568, 2020.
    [85] E. Schneider, L. Dai, R. Q. Topper, C. Drechsel-Grau, and M. E. Tuckerman, "Stochastic neural network approach for learning high-dimensional free energy surfaces," Physical review letters, vol. 119, no. 15, p. 150601, 2017.
    [86] G. W. Richings and S. Habershon, "Direct grid-based nonadiabatic dynamics on machine-learned potential energy surfaces: application to spin-forbidden processes," The Journal of Physical Chemistry A, vol. 124, no. 44, pp. 9299-9313, 2020.
    [87] A. Fabrizio, A. Grisafi, B. Meyer, M. Ceriotti, and C. Corminboeuf, "Electron density learning of non-covalent systems," Chemical science, vol. 10, no. 41, pp. 9424-9432, 2019.
    [88] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing Co., Inc., 1989.
    [89] J. H. Holland, "Genetic algorithms," Scientific american, vol. 267, no. 1, pp. 66-73, 1992.
    [90] S. Forrest, "Genetic algorithms: principles of natural selection applied to computation," Science, vol. 261, no. 5123, pp. 872-878, 1993.
    [91] F. Busetti, "Genetic Algorithms Overview," 2001.
    [92] P. V. J. C. M. S. Balachandran, "Machine learning guided design of functional materials with targeted properties," Computational Materials Science, vol. 164, pp. 82-90, 2019.
    [93] R. Jinnouchi and R. J. T. j. o. p. c. l. Asahi, "Predicting catalytic activity of nanoparticles by a DFT-aided machine-learning algorithm," J. Phys. Chem. Lett., vol. 8, no. 17, pp. 4279-4283, 2017.
    [94] K. Choudhary and F. J. C. M. S. Tavazza, "Convergence and machine learning predictions of Monkhorst-Pack k-points and plane-wave cut-off in high-throughput DFT calculations," Computational Materials Science, vol. 161, pp. 300-308, 2019.
    [95] W. Huang, P. Martin, and H. L. J. A. M. Zhuang, "Machine-learning phase prediction of high-entropy alloys," Acta Mater., vol. 169, pp. 225-236, 2019.
    [96] W. Li et al., "Efficient corrections for DFT noncovalent interactions based on ensemble learning models," Journal of chemical information and modeling, vol. 59, no. 5, pp. 1849-1857, 2019.
    [97] B. C. Yeo, D. Kim, C. Kim, and S. S. J. S. r. Han, "Pattern learning electronic density of states," Scientific reports, vol. 9, no. 1, pp. 1-10, 2019.
    [98] C.-C. Lin, C.-W. Chang, C.-C. Kaun, and Y.-H. Su, "Stepwise Evolution of Photocatalytic Spinel-Structured (Co,Cr,Fe,Mn,Ni)3O4 High Entropy Oxides from First-Principles Calculations to Machine Learning," Crystals, vol. 11, no. 9, doi: 10.3390/cryst11091035.
    [99] M. G. Walter et al., "Solar water splitting cells," (in eng), Chem Rev, vol. 110, no. 11, pp. 6446-73, Nov 10 2010, doi: 10.1021/cr1002326.
    [100] T. R. Cook, D. K. Dogutan, S. Y. Reece, Y. Surendranath, T. S. Teets, and D. G. Nocera, "Solar energy supply and storage for the legacy and nonlegacy worlds," (in eng), Chem Rev, vol. 110, no. 11, pp. 6474-502, Nov 10 2010, doi: 10.1021/cr100246c.
    [101] I. Katsounaros, S. Cherevko, A. R. Zeradjanin, and K. J. Mayrhofer, "Oxygen electrochemistry as a cornerstone for sustainable energy conversion," (in eng), Angew Chem Int Ed Engl, vol. 53, no. 1, pp. 102-21, Jan 3 2014, doi: 10.1002/anie.201306588.
    [102] M. S. Burke, L. J. Enman, A. S. Batchellor, S. Zou, and S. W. Boettcher, "Oxygen Evolution Reaction Electrocatalysis on Transition Metal Oxides and (Oxy)hydroxides: Activity Trends and Design Principles," Chemistry of Materials, vol. 27, no. 22, pp. 7549-7558, 2015/11/24 2015, doi: 10.1021/acs.chemmater.5b03148.
    [103] H. Kim et al., "Recent Progress in Electrode Materials for Sodium-Ion Batteries," Advanced Energy Materials, vol. 6, no. 19, p. 1600943, 2016, doi: https://doi.org/10.1002/aenm.201600943.
    [104] J. Song et al., "A review on fundamentals for designing oxygen evolution electrocatalysts," Chemical Society Reviews, 10.1039/C9CS00607A vol. 49, no. 7, pp. 2196-2214, 2020, doi: 10.1039/C9CS00607A.
    [105] J. K. Norsko, "Chemisorption on metal surfaces," Reports on Progress in Physics, vol. 53, pp. 1253-1295, 1990.
    [106] F. N. I. Sari et al., "V-doped, divacancy-containing β-FeOOH electrocatalyst for high performance oxygen evolution reaction," Chemical Engineering Journal, vol. 438, p. 135515, 2022/06/15/ 2022, doi: https://doi.org/10.1016/j.cej.2022.135515.
    [107] S.-Y. Li et al., "Sputter-Deposited High Entropy Alloy Thin Film Electrocatalyst for Enhanced Oxygen Evolution Reaction Performance," Small, vol. 18, no. 39, p. 2106127, 2022, doi: https://doi.org/10.1002/smll.202106127.
    [108] Y. Krishnan, S. Bandaru, and N. J. English, "Oxygen-evolution reactions (OER) on transition-metal-doped Fe3Co(PO4)4 iron-phosphate surfaces: a first-principles study," Catalysis Science & Technology, 10.1039/D1CY00302J vol. 11, no. 13, pp. 4619-4626, 2021, doi: 10.1039/D1CY00302J.
    [109] G. Kresse and J. Furthmüller, "Vienna ab-initio simulation package (vasp)," Vienna: Vienna University, 2001.
    [110] S. Dudarev, G. Botton, S. Savrasov, C. Humphreys, and A. Sutton, "Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+ U study," Physical Review B, vol. 57, no. 3, p. 1505, 1998.
    [111] A. J. H. M. Kock, H. M. Fortuin, and J. W. Geus, "The reduction behavior of supported iron catalysts in hydrogen or carbon monoxide atmospheres," Journal of Catalysis, vol. 96, no. 1, pp. 261-275, 1985/11/01/ 1985, doi: https://doi.org/10.1016/0021-9517(85)90379-3.
    [112] H.-Y. Lin, Y.-W. Chen, and C. Li, "The mechanism of reduction of iron oxide by hydrogen," Thermochimica Acta, vol. 400, no. 1, pp. 61-67, 2003/04/17/ 2003, doi: https://doi.org/10.1016/S0040-6031(02)00478-1.
    [113] F.-W. Chang, L. S. Roselin, and T.-C. Ou, "Hydrogen production by partial oxidation of methanol over bimetallic Au–Ru/Fe2O3 catalysts," Applied Catalysis A: General, vol. 334, no. 1, pp. 147-155, 2008/01/01/ 2008, doi: https://doi.org/10.1016/j.apcata.2007.10.003.
    [114] W. K. Jozwiak, E. Kaczmarek, T. P. Maniecki, W. Ignaczak, and W. Maniukiewicz, "Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres," Applied Catalysis A: General, vol. 326, no. 1, pp. 17-27, 2007/06/30/ 2007, doi: https://doi.org/10.1016/j.apcata.2007.03.021.
    [115] O. J. Wimmers, P. Arnoldy, and J. A. Moulijn, "Determination of the reduction mechanism by temperature-programmed reduction: application to small iron oxide (Fe2O3) particles," The Journal of Physical Chemistry, vol. 90, no. 7, pp. 1331-1337, 1986/03/01 1986, doi: 10.1021/j100398a025.
    [116] G. Munteanu, L. Ilieva, and D. Andreeva, "Kinetic parameters obtained from TPR data for α-Fe2O3 and Auα-Fe2O3 systems," Thermochimica Acta, vol. 291, no. 1, pp. 171-177, 1997/04/01/ 1997, doi: https://doi.org/10.1016/S0040-6031(96)03097-3.
    [117] A. Kleiman-Shwarsctein et al., "Electrodeposited Aluminum-Doped α-Fe2O3 Photoelectrodes: Experiment and Theory," Chemistry of Materials, vol. 22, no. 2, pp. 510-517, 2010/01/26 2010, doi: 10.1021/cm903135j.
    [118] T. Droubay, K. M. Rosso, S. M. Heald, D. E. McCready, C. M. Wang, and S. A. Chambers, "Structure, magnetism, and conductivity in epitaxialTi-dopedα−Fe2O3hematite: Experiment and density functional theory calculations," Physical Review B, vol. 75, no. 10, 2007, doi: 10.1103/physrevb.75.104412.
    [119] X. Y. Meng et al., "Enhanced photoelectrochemical activity for Cu and Ti doped hematite: The first principles calculations," Applied Physics Letters, vol. 98, no. 11, p. 112104, 2011, doi: 10.1063/1.3567766.
    [120] Z. D. Pozun and G. Henkelman, "Hybrid density functional theory band structure engineering in hematite," The Journal of Chemical Physics, vol. 134, no. 22, p. 224706, 2011, doi: 10.1063/1.3598947.
    [121] P. C S, V. Timón, and M. Valant, "Electronic band gaps of ternary corundum solid solutions from Fe2O3 –Cr2O3 –Al2O3 system for photocatalytic applications: A theoretical study," Computational Materials Science, vol. 55, pp. 192-198, 04/01 2012, doi: 10.1016/j.commatsci.2011.11.025.
    [122] R. Rivera, H. Pinto, A. Stashans, and L. Piedra, "Density functional theory study of Al-doped hematite," Physica Scripta, vol. 85, p. 015602, 12/08 2011, doi: 10.1088/0031-8949/85/01/015602.
    [123] N. C. Wilson and S. P. Russo, "Hybrid density functional theory study of the high-pressure polymorphs ofα-Fe2O3hematite," Physical Review B, vol. 79, no. 9, 2009, doi: 10.1103/physrevb.79.094113.
    [124] P. Canepa, E. Schofield, A. V. Chadwick, and M. Alfredsson, "Comparison of a calculated and measured XANES spectrum of α-Fe2O3," Physical Chemistry Chemical Physics, vol. 13, no. 28, p. 12826, 2011, doi: 10.1039/c1cp00034a.
    [125] M. U. a. J. K. L M Sandratskii, "Band theory for electronic and magnetic properties of α-Fe2O3," J. Phys.: Condens. Matter, vol. 8, pp. 983-989, 1996.
    [126] A. H. Morrish, Canted Antiferromagnetism: Hematite. WORLD SCIENTIFIC, 1995, p. 208.
    [127] M. Cao et al., "Single-Crystal Dendritic Micro-Pines of Magnetic α-Fe2O3: Large-Scale Synthesis, Formation Mechanism, and Properties," Angewandte Chemie International Edition, vol. 44, no. 27, pp. 4197-4201, 2005, doi: 10.1002/anie.200500448.
    [128] L. W. Finger and R. M. Hazen, "Crystal structure and isothermal compression of Fe2O3, Cr2O3, and V2O3 to 50 kbars," Journal of Applied Physics, vol. 51, no. 10, p. 5362, 1980, doi: 10.1063/1.327451.
    [129] L. Pauling and S. B. Hendricks, "THE CRYSTAL STRUCTURES OF HEMATITE AND CORUNDUM," Journal of the American Chemical Society, vol. 47, no. 3, pp. 781-790, 1925, doi: 10.1021/ja01680a027.
    [130] R. L. Blake, R. E. Hessevick, T. Zoltai, and L. W. Finger, "Refinement of the hematite structure," American Mineralogist, vol. 51, no. 1-2, pp. 123-129, 1966.
    [131] W. Setyawan and S. Curtarolo, "High-throughput electronic band structure calculations: Challenges and tools," Computational Materials Science, vol. 49, no. 2, pp. 299-312, 2010/08/01/ 2010, doi: https://doi.org/10.1016/j.commatsci.2010.05.010.
    [132] E. Krén, P. Szabó, and G. Konczos, "Neutron diffraction studies on the (1−x) Fe2O3 − xRh2O3 system," Physics Letters, vol. 19, no. 2, pp. 103-104, 1965/10/01/ 1965, doi: https://doi.org/10.1016/0031-9163(65)90731-6.
    [133] S. Mochizuki, "Electrical conductivity of α-Fe2O3," physica status solidi (a), https://doi.org/10.1002/pssa.2210410232 vol. 41, no. 2, pp. 591-594, 1977/06/16 1977, doi: https://doi.org/10.1002/pssa.2210410232.
    [134] J. K. Leland and A. J. Bard, "Electrochemical investigation of the electron-transfer kinetics and energetics of illuminated tungsten oxide colloids," The Journal of Physical Chemistry, vol. 91, no. 19, pp. 5083-5087, 1987, doi: 10.1021/j100303a040.
    [135] L. Wang, K. C. Lai, L. Huang, J. W. Evans, and Y. Han, "Low-index surface energies, cleavage energies, and surface relaxations for crystalline NiAl from first-principles calculations," Surface Science, vol. 695, p. 121532, 2020/05/01/ 2020, doi: https://doi.org/10.1016/j.susc.2019.121532.
    [136] Y. S. Zhongyuan Liu, Xiaofeng Wu, Changmin Hou, Zhibin Geng, Jie Wu, Keke Huang, Lu Gao and Shouhua Feng "Charge transfer-induced O p-band center shift for an enhanced OER performance in LaCoO3 film†," CrystEngComm, no. 10, 2019.
    [137] Y. Wang et al., "Optimized electronic structure and p-band centre control engineering to enhance surface absorption and inherent conductivity for accelerated hydrogen evolution over a wide pH range," Physical Chemistry Chemical Physics, vol. 22, no. 26, pp. 14537-14543, 2020, doi: 10.1039/d0cp02131h.
    [138] M. Yu and D. R. Trinkle, "Accurate and efficient algorithm for Bader charge integration," (in eng), J Chem Phys, vol. 134, no. 6, p. 064111, Feb 14 2011, doi: 10.1063/1.3553716.
    [139] Y. Yamaguchi and Y. Osamura, "A New Dimension to Quantum Chemistry: Analytic Derivative Methods in AB Initio Molecular Electronic Structure Theory," 1994.
    [140] D. Roy, S. C. Mandal, and B. Pathak, "Machine Learning-Driven High-Throughput Screening of Alloy-Based Catalysts for Selective CO2 Hydrogenation to Methanol," ACS Applied Materials & Interfaces, vol. 13, no. 47, pp. 56151-56163, 2021/12/01 2021, doi: 10.1021/acsami.1c16696.
    [141] D. Roy, S. C. Mandal, and B. Pathak, "Machine Learning Assisted Exploration of High Entropy Alloy-Based Catalysts for Selective CO2 Reduction to Methanol," The Journal of Physical Chemistry Letters, vol. 13, no. 25, pp. 5991-6002, 2022/06/30 2022, doi: 10.1021/acs.jpclett.2c00929.
    [142] D. Roy, S. C. Mandal, and B. Pathak, "Machine Learning-Driven High-Throughput Screening of Alloy-Based Catalysts for Selective CO(2) Hydrogenation to Methanol," (in eng), ACS Appl Mater Interfaces, vol. 13, no. 47, pp. 56151-56163, Dec 1 2021, doi: 10.1021/acsami.1c16696.
    [143] J. K. Pedersen, T. A. A. Batchelor, A. Bagger, and J. Rossmeisl, "High-Entropy Alloys as Catalysts for the CO2 and CO Reduction Reactions," ACS Catalysis, vol. 10, no. 3, pp. 2169-2176, 2020/02/07 2020, doi: 10.1021/acscatal.9b04343.
    [144] A. S. Haile, W. Yohannes, and Y. S. Mekonnen, "Oxygen reduction reaction on Pt-skin Pt3V(111) fuel cell cathode: a density functional theory study," RSC Advances, 10.1039/D0RA02972F vol. 10, no. 46, pp. 27346-27356, 2020, doi: 10.1039/D0RA02972F.
    [145] M. Cui, T. Liu, Q. Li, J. Yang, and Y. Jia, "Oxygen Evolution Reaction (OER) on Clean and Oxygen Deficient Low-Index SrTiO3 Surfaces: A Theoretical Systematic Study," ACS Sustainable Chemistry & Engineering, vol. 7, no. 18, pp. 15346-15353, 2019/09/16 2019, doi: 10.1021/acssuschemeng.9b02672.

    下載圖示 校內:2024-08-21公開
    校外:2024-08-21公開
    QR CODE