簡易檢索 / 詳目顯示

研究生: 林欣仕
Lin, Hsin-Shin
論文名稱: 短期落地訓練對成長中母鼠的局部骨骼代謝之影響
Effect of a Short-term Free-fall Landing on Local Bone Metabolism in Growing Female Rats
指導教授: 黃滄海
Huang, Tsang-Hai
學位類別: 碩士
Master
系所名稱: 管理學院 - 體育健康與休閒研究所
Institute of Physical Education, Health & Leisure Studies
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 47
中文關鍵詞: 機械性負荷骨生成落地
外文關鍵詞: bone formation, bone, mechanical load, landing
相關次數: 點閱:86下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之目的旨在探討一週的落地訓練之刺激對骨骼發展的影響。本研究中,實驗動物(大鼠)分為10次落地組(10L)、30次落地組(L30)及控制組(CON),其中落地組每日接受10次與30次自40公分的高處落下之訓練,共五天,於第一次訓練與第五次訓練架設測力板以取得地面反作用力作為運動強度探討。實驗動物訓練一週後犧牲,並採集其骨骼組織樣本進行動態與靜態骨骼組織型態學分析、骨骼組織生物力學壓斷測試分析。結果顯示:地面反作用力方面,大鼠在第一天落地時的地面反作用力與第五天者達顯著差異(p<0.05)。動態組織型態學分析方面,訓練一週後,L10組於尺骨骨外膜的MAR與BFR/BS顯著高於控制組,L30組則是在骨外膜的BFR/BS和骨內膜的MAR顯著高於控制組。在骨骼組織生物力學壓斷測試分析方面,運動組的股骨各項指標皆小於控制,其中最大應力所能吸收的能量達顯著差異(p< 0.05),其餘各項分析與尺骨方面皆未達顯著差異,這有可能導因於受刺激之骨骼仍處於再塑作用階段,因而使得骨骼生物力學特性較差或無優於控制組的原因。結論:一週的落地訓練對成長中之大鼠骨骼而言,會增加尺骨部位的骨生成作用,另外,本研究未發現受刺激部位骨骼的織網骨生成,這顯示落地模型較貼接近人體運動模式,且可供未來從事局部性的機械性負荷對於骨代謝影響之研究。

    The purpose of this study is to investigate the effects of free fall landing on local bone metabolism in growing female rats. In the present study, animals were randomly assigned into three groups, which were L30 group (n=11), L10 group (n=11) and control (CON) group (n=10). Animals of the L30 and L10 groups were subjected to 40cm high free fall landing for thirty times and ten times per day, respectively. Additionally, we acquired ground reaction force data form force plate on day 1 and day 5. Animals were sacrificed after a 5-day landing training. We used methods of dynamic histomorphometry, static histomorphometry and tissue biomechanical tests to estimate the effects of free fall landing on bone. In ground reaction force (GRF) measurement, peak GRF of day 5 were significantly lower than day 1 (p<0.05). In static bone histomorphometry, all parameters showed no significantly difference among groups. In dynamic histomorphometry, total mineral apposition rate (MAR) and bone formation rate (BFR/BS, %) of periosteal of ulna were significantly higher in the L10 and L30 groups as compared to the CON group (p<0.05). In addition, MAR of endosteal of ulna was also significantly higher in landing groups. In the biomechanical test of femur, max stress energy absorption was significantly lower in two landing groups, suggesting short-term landing training may induced a bone remodeling, which cause a transient weaker bone material. In conclusion, a 5-day landing training would produce a bone formation to ulna of rats without showing any woven bone as revealed by other animal mechanical loading model, suggesting the landing model would be more appropriate as a model for investigating the effects of local mechanical load on local bone metabolism.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 第壹章 緒論 1 第一節 問題背景 1 第二節 研究目的 3 第三節 操作性定義 3 第四節 研究限制 3 第五節 研究重要性 3 第貳章 文獻探討 5 第一節 機械性負荷與定律 5 第二節 機械性負荷的動物模型 6 第三節 人體和動物跳躍訓練的研究 11 第四節 短期的訓練效果 15 第五節 總結 16 第參章 研究方法 17 第一節 實驗動物 17 第二節 實驗設計 17 第三節 分析方法 18 第四節 統計分析 24 第肆章 結果 25 第一節 體重 25 第二節 地面反作用力 25 第三節 靜態骨骼組織型態學 27 第四節 動態骨骼組織型態學 27 第四節 骨骼組織生物力學壓斷測試 33 第五節 骨骼乾溼重與斷面幾何學之測量 35 第伍章 討論 37 第一節 體重 37 第二節 地面反作用力 37 第三節 靜態骨骼組織型態學 38 第四節 動態骨骼組織型態學 38 第五節 骨骼組織生物力學壓斷測試 40 第六節 骨骼乾溼重與斷面幾何學之測量 41 第七節 結論與建議 41 參考文獻43

    邱宏達(2000)。赤足與穿鞋跑步之著地策略分析。大專體育學刊4,101-08。
    Bagi, C. M., Ammann, P., Rizzoli, R., Miller, S. C. (1997)Effect of estrogen deficiency on cancellous and cortical bone structure and strength of the femoral neck in rats. Calcif Tissue Int, 61, 336-344.
    Bourrin S., Palle S., Pupier R., Vico L., Alexandre C: (1995).Effect of physical training on bone adaptation in three zones of the rat tibia. J Bone Miner Res, 10, 1745-1752.
    Burr, D. B., Robling, A. G., & Turner, C. H. (2002). Effects of biomechanical stress on bones in animals. Bone, 30, 781-786.
    Cerri, P. S., Boabaid, F., & Katchburian, E. (2003). Combined TUNEL and TRAP methods suggest that apoptotic bone cells are inside vacuoles of alveolar bone osteoclasts in young rats. J Periodontal Res, 38, 223-226.
    de Souza, R. L., Pitsillides, A. A., Lanyon, L. E., Skerry, T. M., & Chenu, C. (2005). Sympathetic nervous system does not mediate the load-induced cortical new bone formation. J Bone Miner Res, 20, 2159-2168.
    Duncan, R. L., & Turner, C. H. (1995). Mechanotransduction and the functional response of bone to mechanical strain. Calcif Tissue Int, 57, 344-358.
    Forwood, M. R., Bennett, M. B., Blowers, A. R., & Nadorfi, R. L. (1998). Modification of the in vivo four-point loading model for studying mechanically induced bone adaptation. Bone, 23, 307-310.
    Fuchs, R. K., Bauer, J. J., & Snow, C. M. (2001). Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomized controlled trial. J Bone Miner Res, 16, 148-156.
    Heinonen, A., Sievanen, H., Kyrolainen, H., Perttunen, J., & Kannus, P. (2001). Mineral mass, size, and estimated mechanical strength of triple jumpers' lower limb. Bone, 29, 279-285.
    Honda, A., Sogo, N., Nagasawa, S., Shimizu, T., & Umemura, Y. (2003). High-impact exercise strengthens bone in osteopenic ovariectomized rats with the same outcome as Sham rats. J Appl Physiol, 95, 1032-1037.
    Honda, A., Umemura, Y., & Nagasawa, S. (2001). Effect of high-impact and low-repetition training on bones in ovariectomized rats. J Bone Miner Res, 16, 1688-1693.
    Hsieh, Y. F., Robling, A. G., Ambrosius, W. T., Burr, D. B., & Turner, C. H. (2001). Mechanical loading of diaphyseal bone in vivo: the strain threshold for an osteogenic response varies with location. J Bone Miner Res, 16, 2291-2297.
    Huang, T. H., Lin, S. C., Chang, F. L., Hsieh, S. S., Liu, S. H., & Yang, R. S. (2003). Effects of different exercise modes on mineralization, structure, and biomechanical properties of growing bone. J Appl Physiol, 95, 300-307.
    Johannsen, N., Binkley, T., Englert, V., Neiderauer, G., & Specker, B. (2003). Bone response to jumping is site-specific in children: a randomized trial. Bone, 33, 533-539.
    Judex, S., & Zernicke, R. F. (2000). High-impact exercise and growing bone: relation between high strain rates and enhanced bone formation. J Appl Physiol, 88, 2183-2191.
    Kato, T., Terashima, T., Yamashita, T., Hatanaka, Y., Honda, A., & Umemura, Y. (2006). Effect of low-repetition jump training on bone mineral density in young women. J Appl Physiol, 100, 839-843.
    Martiniakova, M., Grosskopf, B., Omelka, R., Vondrakova, M., Bauerova, M.(2006). Differences among species on compact bone tissue microstructure of mammalian skeleton: use of a discriminant function analysis for species identification.J Forensic Sci, 51, 1235-1239.
    Kontulainen, S. A., Kannus, P. A., Pasanen, M. E., Sievanen, H. T., Heinonen, A. O., Oja, P., et al. (2002). Does previous participation in high-impact training result in residual bone gain in growing girls? One year follow-up of a 9-month jumping intervention. Int J Sports Med, 23, 575-581.
    MacKelvie, K. J., McKay, H. A., Petit, M. A., Moran, O., & Khan, K. M. (2002). Bone mineral response to a 7-month randomized controlled, school-based jumping intervention in 121 prepubertal boys: associations with ethnicity and body mass index. J Bone Miner Res, 17, 834-844.
    McKay, H. A., Petit, M. A., Schutz, R. W., Prior, J. C., Barr, S. I., & Khan, K. M. (2000). Augmented trochanteric bone mineral density after modified physical education classes: a randomized school-based exercise intervention study in prepubescent and early pubescent children. J Pediatr, 136, 156-162.
    New, S. A. (2001). Exercise, bone and nutrition. Proc Nutr Soc, 60, 265-274.
    Notomi, T., Lee, S. J., Okimoto, N., Okazaki, Y., Takamoto, T., Nakamura, T., et al. (2000). Effects of resistance exercise training on mass, strength, and turnover of bone in growing rats. Eur J Appl Physiol, 82, 268-274.
    Parfitt, A. M., et al. (1987).Bone histomorphometry: standardization of nomecnclature, symbols, and units. J Bone Miner Res, 2, 595-609.
    Petit, M. A., McKay, H. A., MacKelvie, K. J., Heinonen, A., Khan, K. M., & Beck, T. J. (2002). A randomized school-based jumping intervention confers site and maturity-specific benefits on bone structural properties in girls: a hip structural analysis study. J Bone Miner Res, 17, 363-372.
    Raab-Cullen, D. M., Akhter, M. P., Kimmel, D. B., & Recker, R. R. (1994). Periosteal bone formation stimulated by externally induced bending strains. J Bone Miner Res, 9, 1143-1152.
    Robling, A. G., Burr, D. B., & Turner, C. H. (2001). Recovery periods restore mechanosensitivity to dynamically loaded bone. J Exp Biol, 204(Pt 19), 3389-3399.
    Ruth, E. B.(1953).Bone studies.II. An experimental study of the Haversian-type vascular channels.Am J Anat, 93, 429-455.
    Turner, C. H. (1998). Three rules for bone adaptation to mechanical stimuli. Bone, 23, 399-407.
    Turner, C. H. (2006). Bone strength: current concepts. Ann N Y Acad Sci, 1068, 429-446.
    Turner, C. H., Akhter, M. P., Raab, D. M., Kimmel, D. B., & Recker, R. R. (1991). A noninvasive, in vivo model for studying strain adaptive bone modeling. Bone, 12, 73-79.
    Umemura, Y., Ishiko, T., Tsujimoto, H., Miura, H., Mokushi, N., & Suzuki, H. (1995). Effects of jump training on bone hypertrophy in young and old rats. Int J Sports Med, 16, 364-367.
    Umemura, Y., Ishiko, T., Yamauchi, T., Kurono, M., & Mashiko, S. (1997). Five jumps per day increase bone mass and breaking force in rats. J Bone Miner Res, 12, 1480-1485.
    Welch, J. M., Weaver, C. M., & Turner, C. H. (2004). Adaptations to free-fall impact are different in the shafts and bone ends of rat forelimbs. J Appl Physiol, 97, 1859-1865.
    Yang, R. S., Chen, Y. Z., Huang, T. H., Tang, C. H., Fu, W. M., Lu, B. Y., et al. (2005). The effects of low-intensity ultrasound on growing bone after sciatic neurectomy. Ultrasound Med Biol, 31, 431-437.
    Yu, B., Lin, C. F., & Garrett, W. E. (2006). Lower extremity biomechanics during the landing of a stop-jump task. Clin Biomech (Bristol, Avon), 21, 297-305.

    下載圖示 校內:2009-08-25公開
    校外:2009-08-25公開
    QR CODE