簡易檢索 / 詳目顯示

研究生: 郭佩棋
Kuo, Pei-Chi
論文名稱: 單管及多管鈀膜系統分離氫氣和二氧化碳之研究
Hydrogen and carbon dioxide separation in single and multiple palladium membrane tube systems
指導教授: 陳維新
Chen, Wei-Hsin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 101
中文關鍵詞: 鈀膜(Pd)水氣轉移反應雙膜管氫氣回收和二氧化碳富集兩階段優化演化計算參數掃描Nelder-Mead方法濃度極化
外文關鍵詞: Palladium (Pd) membrane, water gas shift reaction, dual membrane tube, Hydrogen recovery and CO2 enrichment, Two-stage optimization, Evolutionary computation, Parametric sweep, Nelder-Mead method, Concentration polarization
相關次數: 點閱:162下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以數值模擬的方式,分析多膜管系統設計對於氫氣滲透之影響及運用最佳化計算尋找多膜管間最佳的相對角度。藉由數值結果,了解薄膜管間的排列方式及相對角度對於流場改變伴隨氫氣滲透之影響,並提供膜管操作參數之建議,作為實驗之參考依據,本文主要分為兩大部分,如下所述。
    在本研究的第一部分為研究單膜管和串列式雙膜管系統對氫氣分離及二氧化碳富集之影響,在單管系統中測試了四種不同的富氫氣體,且在雙管系統中考慮雷諾數(Re)、兩膜管之間的距離以及壓力差三個參數,同時,通過檢查當地的捨伍德數量來強調界面運輸現象。模擬結果顯示,無論是哪種進料氣體混合物,當雷諾數從1增加到100時,氫氣回收率和二氧化碳富集皆顯著降低,這表明雷諾數在氫氣滲透和二氧化碳富集中起著重要作用,且應控制在Re≤10。在低雷諾數和短間距時,兩膜管之間的相互作用產生,使得雙膜管系統中的單一膜管回收率明顯低於單膜管系統,且因前管的流動阻力和濃度極化現象而導致後管的的氫氣滲透效果降低。然而,當雷諾數高達100時,相互作用和濃度極化幾乎可以忽略不計。
    第二部分中,考慮了單膜管、雙膜管、三膜管和四膜管系統在雷諾數1-50範圍內的現象。為了最大限度地提高系統中的氫氣回收和二氧化碳的濃度,採用兩階段優化設計膜管位置的配置。在第一階段,應用參數掃描先尋找膜管間可行的角度組合;在第二階段,採用Nelder-Mead單純形法的演化計算來找出膜管最佳的排列位置,其中選擇出口氫氣濃度作為目標函數,而優化的目標則是減小前管對後管的濃度極化影響。結果顯示,管數量的增加提高了優化效率。與串列式膜管系統相比,在Re = 10時的最佳化排列可將氫氣回收率提高12.2%,而二氧化碳富集可提高7%

    In this study, numerical simulation was conducted to analyze the effects of multi-membrane tube system design on hydrogen permeation and optimization was carried out to determine the best relative angles between multi-membrane tubes. The study was divided into two parts.
    In the first part of this research, H2 separation and CO2 enrichment in a duct using a single membrane tube and two membrane tubes in tandem are investigated numerically. Four different hydrogen-rich gases are tested in the single tube system, while three parameters of Reynolds number (Re), the distance between the two membrane tubes, and pressure difference are considered in the dual tube system. Meanwhile, the interfacial transport phenomena are underlined via examining the local Sherwood number. The results suggest that the H2 recovery and CO2 enrichment decrease dramatically when the Reynolds number increases from 1 to 100, regardless of which gas mixture is fed. This reveals that the Reynolds number plays a prominent role in H2 permeation and CO2 enrichment, and should be controlled at Re ≤ 10. The interaction between the two tubes are evidently exhibited at low Reynolds numbers and short distances, so the H2 recoveries by the two individual tubes are significantly lower than that by the single tube. The flow retardation and H2 concentration polarization from the leading tube upon the trailing tube deteriorate the H2 permeation of the latter. However, when the Reynolds number is as high as 100, the interaction and concentration polarization are almost ignorable.
    In the second part of this research, single-, double-, triple-, and quadruple-tube systems with palladium (Pd) membranes are considered, while the Reynolds number (Re) is in the range of 1-50. To maximize H2 recovery and CO2 enrichment in the systems, their configurations are designed using a two-stage optimization. In the first stage, the parametric sweep technology is applied to find the feasible angle combination of the membrane tubes. In the second stage, the evolutionary computation of the Nelder-Mead simplex method is adopted to refine the locations of the tubes, where the exit H2 concentration is chosen as the objective function. On account of the scavenging waves stemming from the upstream tubes, the goals of the optimization is to diminish the concentration polarization of the upstream tubes on the downstream ones. The predictions indicate that an increase in the number of tubes raises the optimization efficiency. Compared to the tubes in tandem, the optimized configuration at Re=10 can improve the hydrogen recovery up to 12.2%, while the CO2 enrichment can be intensified by up to 7%.

    中文摘要 ii Abstract iv 誌謝 vi Table of Contents vii List of Tables x List of Figures xi Chapter 1 Introduction 16 1.1. Background 16 1.2. Motivation and objectives 19 1.3. A schematics of experimental procedure 20 Chapter 2 Literature review 22 2.1. Flow field design 22 2.2. Optimization methods 25 Chapter 3 Theory and methodology 27 3.1. Hydrogen recovery and CO2 enrichment in single and dual Pd membrane tube systems 27 3.1.1. Membrane systems 27 3.1.2. Mathematical formulation 29 3.1.3. Numerical method 32 3.1.4. Membrane properties and operating conditions 35 3.1.5. Sherwood number 36 3.2. Evolutionary computation for maximizing CO2 and H2 separation in multiple-tube palladium-membrane systems 37 3.2.1. Membrane systems 37 3.2.2. Numerical method and grid system 39 3.2.3. Membrane properties and operating conditions 41 3.2.4. Two-stage optimization method 41 Chapter 4 Results and discussion 45 4.1. Hydrogen recovery and CO2 enrichment in single and dual Pd membrane tube systems 45 4.1.1. Hydrogen recoveries of various gas mixtures 45 4.1.2. Streamline distributions and velocity contours in single Pd membrane tube 47 4.1.3. Hydrogen permeation, CO2 enrichment and local Sherwood number in single Pd membrane tube 49 4.1.4. Streamline distributions and velocity contours in dual Pd membrane tube system 53 4.1.5. Hydrogen recovery and concentration contours in dual Pd membrane tube system 55 4.1.6. Local Sherwood number and hydrogen permeation rate in dual Pd membrane tube system 58 4.1.7. Effect of the distance between two membrane tubes 61 4.1.8. Effect of pressure difference on H2 recovery 63 4.2. Evolutionary computation for maximizing CO2 and H2 separation in multiple-tube palladium-membrane systems 65 4.2.1. Membrane tubes in tandem 65 4.2.2. Two-stage computation 68 4.2.3. Velocity contours 71 4.2.4. H2 concentration contours 73 4.2.5. H2 recovery (HR) and CO2 enrichment 75 4.2.6. Local Sherwood number 79 4.2.7. Effect of tube distance 81 4.2.8. The effect of different Reynolds numbers 84 Chapter 5 Conclusions and future works 88 5.1. Conclusions 88 5.2. Future works 89 References 91 自述 100

    [1] Abdul Mujeebu M. Hydrogen and syngas production by superadiabatic combustion – A review. Applied Energy. 173;210-24; 2016.
    [2] Ahmad AL, Lau KK. Impact of different spacer filaments geometries on 2D unsteady hydrodynamics and concentration polarization in spiral wound membrane channel. Journal of Membrane Science. 286;1-2;77-92; 2006.
    [3] Ahmed S, Seraji MT, Jahedi J, Hashib MA. Application of CFD for simulation of a baffled tubular membrane. Chemical Engineering Research and Design. 90;5;600-8; 2012.
    [4] Al-Mufachi N, Rees N, Steinberger-Wilkens R. Hydrogen selective membranes: a review of palladium-based dense metal membranes. Renewable and Sustainable Energy Reviews. 47;540-51; 2015.
    [5] Alkhamis N, Oztekin DE, Anqi AE, Alsaiari A, Oztekin A. Numerical study of gas separation using a membrane. International Journal of Heat and Mass Transfer. 80;835-43; 2015.
    [6] Alrehili M, Usta M, Alkhamis N, Anqi AE, Oztekin A. Flows past arrays of hollow fiber membranes – Gas separation. International Journal of Heat and Mass Transfer. 97;400-11; 2016.
    [7] Bergman TL, Lavine AS, Incropera FP, DeWitt DP. Fundamentals of Heat and Mass Transfer 7th ed. John Wiley & Sons, Inc.: R. R. Donnelley:402; 2011.
    [8] Brunetti A, Caravella A, Fernandez E, Pacheco Tanaka DA, Gallucci F, Drioli E, et al. Syngas upgrading in a membrane reactor with thin Pd-alloy supported membrane. International Journal of Hydrogen Energy. 40;34;10883-93; 2015.
    [9] Caravella A, Barbieri G, Drioli E. Modelling and simulation of hydrogen permeation through supported Pd-alloy membranes with a multicomponent approach. Chemical Engineering Science. 63;8;2149-60; 2008.
    [10] Caravella A, Melone L, Sun Y, Brunetti A, Drioli E, Barbieri G. Concentration polarization distribution along Pd-based membrane reactors: A modelling approach applied to Water-Gas Shift. International Journal of Hydrogen Energy. 41;4;2660-70; 2016.
    [11] Catalano J, Giacinti Baschetti M, Sarti GC. Influence of the gas phase resistance on hydrogen flux through thin palladium–silver membranes. Journal of Membrane Science. 339;1–2;57-67; 2009.
    [12] Cengel YA, Ghajar AJ, McGraw-Hill. Heat and Mass Transfer. McGraw-Hill Education 2011.
    [13] Chandra A, Chhabra RP. Momentum and heat transfer characteristics of a semi-circular cylinder immersed in power-law fluids in the steady flow regime. International Journal of Heat and Mass Transfer. 54;13–14;2734-50; 2011.
    [14] Chein R, Chung JN. Particle dynamics in a gas-particle flow over normal and inclined plates. Chemical Engineering Science. 43;7;1621-36; 1988.
    [15] Chein RY, Chen YC, Chyou YP, Chung JN. Three-dimensional numerical modeling on high pressure membrane reactors for high temperature water-gas shift reaction. International Journal of Hydrogen Energy. 39;28;15517-29; 2014.
    [16] Chen W-H. Dynamics of sulfur dioxide absorption in a raindrop falling at terminal velocity. Atmospheric Environment. 35;28;4777-90; 2001.
    [17] Chen W-H. Unsteady absorption of sulfur dioxide by an atmospheric water droplet with internal circulation. Atmospheric Environment. 35;13;2375-93; 2001.
    [18] Chen W-H, Chen Y-Y, Hung C-I. A Simplified Model of Predicting SO2 Absorption by Single Atmospheric Raindrops with Chemical Dissociation and Internal Circulation. Aerosol and Air Quality Research. 11;7;860-72; 2011.
    [19] Chen W-H, Chiu T-W, Hung C-I. Hydrogen production from methane under the interaction of catalytic partial oxidation, water gas shift reaction and heat recovery. international journal of hydrogen energy. 35;23;12808-20; 2010.
    [20] Chen W-H, Jheng J-G. Characterization of water gas shift reaction in association with carbon dioxide sequestration. Journal of Power Sources. 172;1;368-75; 2007.
    [21] Chen W-H, Jheng J-G, Yu A. Hydrogen generation from a catalytic water gas shift reaction under microwave irradiation. international journal of hydrogen energy. 33;18;4789-97; 2008.
    [22] Chen W-H, Jheng J-G, Yu AB. Hydrogen generation from a catalytic water gas shift reaction under microwave irradiation. International Journal of Hydrogen Energy. 33;18;4789-97; 2008.
    [23] Chen W-H, Lin C-H, Lin Y-L. Flow-field design for improving hydrogen recovery in a palladium membrane tube. Journal of Membrane Science. 472;45-54; 2014.
    [24] Chen W-H, Lin S-C. Characterization of catalytic partial oxidation of methane with carbon dioxide utilization and excess enthalpy recovery. Applied Energy. 162;1141-52; 2016.
    [25] Chen W-H, Lu J-J. Hydrogen production from water gas shift reactions in association with separation using a palladium membrane tube. International Journal of Energy Research. 36;3;346-54; 2012.
    [26] Chen W-H, Syu W-Z, Hung C-I, Lin Y-L, Yang C-C. A numerical approach of conjugate hydrogen permeation and polarization in a Pd membrane tube. International Journal of Hydrogen Energy. 37;17;12666-79; 2012.
    [27] Chen W-H, Syu W-Z, Hung C-I, Lin Y-L, Yang C-C. Influences of geometry and flow pattern on hydrogen separation in a Pd-based membrane tube. International Journal of Hydrogen Energy. 38;2;1145-56; 2013.
    [28] Chen W-H, Tsai C-W, Lin Y-L. Numerical studies of the influences of bypass on hydrogen separation in a multichannel Pd membrane system. Renewable Energy. 104;Supplement C;259-70; 2017.
    [29] Chen W-H, Tsai C-W, Lin Y-L. Numerical studies of the influences of bypass on hydrogen separation in a multichannel Pd membrane system. Renewable Energy. 104;259-70; 2017.
    [30] Chen WH, Kuo PC, Chein R, Lin YL. Hydrogen recovery and CO2 enrichment in single and dual Pd membrane tube systems 2018.
    [31] Chen X, Li T. A novel passive micromixer designed by applying an optimization algorithm to the zigzag microchannel. Chemical Engineering Journal. 313;Supplement C;1406-14; 2017.
    [32] Cheng X, Shi Z, Glass N, Zhang L, Zhang J, Song D, et al. A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation. Journal of Power Sources. 165;2;739-56; 2007.
    [33] COMSOL. Optimization Module User's Guide 4.4 2013.
    [34] Conn AR, Scheinberg K, Vicente LN. Introduction to Derivative-Free Optimization. Society for Industrial and Applied Mathematics 2009.
    [35] Duhn JD, Jensen AD, Wedel S, Wix C. Optimization of a new flow design for solid oxide cells using computational fluid dynamics modelling. Journal of Power Sources. 336;261-71; 2016.
    [36] Fimbres-Weihs GA, Wiley DE. Numerical study of mass transfer in three-dimensional spacer-filled narrow channels with steady flow. Journal of Membrane Science. 306;1-2;228-43; 2007.
    [37] Friedrich D, Please CP, Melvin T. Design of novel microfluidic concentration gradient generators suitable for linear and exponential concentration ranges. Chemical Engineering Journal. 193-194;296-303; 2012.
    [38] Götz M, Lefebvre J, Mörs F, McDaniel Koch A, Graf F, Bajohr S, et al. Renewable Power-to-Gas: A technological and economic review. Renewable Energy. 85;Supplement C;1371-90; 2016.
    [39] Galuszka J, Giddings T, Iaquaniello G. Membrane assisted WGSR – Experimental study and reactor modeling. Chemical Engineering Journal. 213;363-70; 2012.
    [40] Gruber MF, Aslak U, Hélix-Nielsen C. Open-source CFD model for optimization of forward osmosis and reverse osmosis membrane modules. Separation and Purification Technology. 158;183-92; 2016.
    [41] Guo N, Leu MC, Koylu UO. Network based optimization model for pin-type flow field of polymer electrolyte membrane fuel cell. International Journal of Hydrogen Energy. 38;16;6750-61; 2013.
    [42] Halmann MM, Steinberg M. Greenhouse Gas Carbon Dioxide Mitigation: Science and Technology. Taylor & Francis 1998.
    [43] Hyseni S. Carbon Capture and Storage as a Method to Mitigate Climate Change. Inquiries Journal2017.
    [44] Jafarkhani M, Moraveji MK, Davarnejad R, Moztarzadeh F, Mozafari M. Three-dimensional simulation of turbulent flow in a membrane tube filled with semi-circular baffles. Desalination. 294;8-16; 2012.
    [45] Jani JM, Wessling M, Lammertink RGH. Geometrical influence on mixing in helical porous membrane microcontactors. Journal of Membrane Science. 378;1-2;351-8; 2011.
    [46] Ji G, Wang G, Hooman K, Bhatia S, Diniz da Costa JC. Simulation of binary gas separation through multi-tube molecular sieving membranes at high temperatures. Chemical Engineering Journal. 218;394-404; 2013.
    [47] Kear M, Evans B, Ellis R, Rolland S. Computational aerodynamic optimisation of vertical axis wind turbine blades. Applied Mathematical Modelling. 40;2;1038-51; 2016.
    [48] Kishore N, Chhabra RP, Eswaran V. Mass transfer from a single fluid sphere to power-law liquids at moderate Reynolds numbers. Chemical Engineering Science. 62;21;6040-53; 2007.
    [49] Kishore N, Chhabra RP, Eswaran V. Bubble swarms in power-law liquids at moderate Reynolds numbers: Drag and mass transfer. Chemical Engineering Research and Design. 86;1;39-53; 2008.
    [50] Li M, Bui T, Chao S. Three-dimensional CFD analysis of hydrodynamics and concentration polarization in an industrial RO feed channel. Desalination. 397;194-204; 2016.
    [51] Li W, Chen KK, Wang Y-N, Krantz WB, Fane AG, Tang CY. A conceptual design of spacers with hairy structures for membrane processes. Journal of Membrane Science. 510;314-25; 2016.
    [52] Lienhard JH, Washington State U, Technical Extension S, Washington State U, College of E, Research D. Synopsis of lift, drag, and vortex frequency data for rigid circular cylinders. Technical Extension Service, Washington State University: Pullman, Wash. 1966.
    [53] Liu S, Teo WK, Tan X, Li K. Preparation of PDMSvi–Al2O3 composite hollow fibre membranes for VOC recovery from waste gas streams. Separation and Purification Technology. 46;1–2;110-7; 2005.
    [54] Liu X, Wang Y, Waite TD, Leslie G. Numerical simulations of impact of membrane module design variables on aeration patterns in membrane bioreactors. Journal of Membrane Science. 520;201-13; 2016.
    [55] Liu Y, He G, Liu X, Xiao G, Li B. CFD simulations of turbulent flow in baffle-filled membrane tubes. Separation and Purification Technology. 67;1;14-20; 2009.
    [56] Luersen MA, Le Riche R. Globalized Nelder–Mead method for engineering optimization. Computers & Structures. 82;23;2251-60; 2004.
    [57] Ma S, Song L. Numerical study on permeate flux enhancement by spacers in a crossflow reverse osmosis channel. Journal of Membrane Science. 284;1-2;102-9; 2006.
    [58] Maehara N, Shimoda Y. Application of the genetic algorithm and downhill simplex methods (Nelder–Mead methods) in the search for the optimum chiller configuration. Applied Thermal Engineering. 61;2;433-42; 2013.
    [59] Mallada R MM. Inorganic Membranes:Synthesis, Characterization and Applications, Membrane science and technology series. Elsevier 13;1-460; 2008.
    [60] Marbán G, Valdés-Solís T. Towards the hydrogen economy? International Journal of Hydrogen Energy. 32;12;1625-37; 2007.
    [61] Mohammadi A, Koşar A. Hydrodynamic and Thermal Performance of Microchannels With Different In-Line Arrangements of Cylindrical Micropin Fins. Journal of Heat Transfer. 138;12;122403--17; 2016.
    [62] Nekhamkina O, Sheintuch M. Effective approximations for concentration-polarization in Pd-membrane separators. Chemical Engineering Journal. 260;835-45; 2015.
    [63] Nekhamkina O, Sheintuch M. Approximate models of concentration-polarization in Pd-membrane separators. Fast numerical analysis. Journal of Membrane Science. 500;Supplement C;136-50; 2016.
    [64] Nikolaidis P, Poullikkas A. A comparative overview of hydrogen production processes. Renewable and Sustainable Energy Reviews. 67;597-611; 2016.
    [65] Olayiwola B, Walzel P. Effects of in-phase oscillation of retentate and filtrate in crossflow filtration at low Reynolds number. Journal of Membrane Science. 345;1;36-46; 2009.
    [66] Pinto F, André RN, Franco C, Carolino C, Gulyurtlu I. Effect of syngas composition on hydrogen permeation through a Pd–Ag membrane. Fuel. 103;444-53; 2013.
    [67] Pizzolato A, Sharma A, Maute K, Sciacovelli A, Verda V. Design of effective fins for fast PCM melting and solidification in shell-and-tube latent heat thermal energy storage through topology optimization. Applied Energy. 208;Supplement C;210-27; 2017.
    [68] Rahimpour MR, Samimi F, Babapoor A, Tohidian T, Mohebi S. Palladium membranes applications in reaction systems for hydrogen separation and purification: A review. Chemical Engineering and Processing: Process Intensification. 121;Supplement C;24-49; 2017.
    [69] Roshko A. Experiments on the flow past a circular cylinder at very high Reynolds number. Journal of Fluid Mechanics. 10;03;345; 2006.
    [70] Saeed A, Vuthaluru R, Yang Y, Vuthaluru HB. Effect of feed spacer arrangement on flow dynamics through spacer filled membranes. Desalination. 285;163-9; 2012.
    [71] Salcedo E, Cajas JC, Treviño C, Martínez-Suástegui L. Unsteady mixed convection heat transfer from two confined isothermal circular cylinders in tandem: Buoyancy and tube spacing effects. International Journal of Heat and Fluid Flow. 60;12-30; 2016.
    [72] Salvi BL, Subramanian KA. Sustainable development of road transportation sector using hydrogen energy system. Renewable and Sustainable Energy Reviews. 51;1132-55; 2015.
    [73] San Marchi C, Hecht ES, Ekoto IW, Groth KM, LaFleur C, Somerday BP, et al. Overview of the DOE hydrogen safety, codes and standards program, part 3: Advances in research and development to enhance the scientific basis for hydrogen regulations, codes and standards. International Journal of Hydrogen Energy. 2016.
    [74] Sanaye S, Hassanzadeh A. Multi-objective optimization of airfoil shape for efficiency improvement and noise reduction in small wind turbines. Journal of Renewable and Sustainable Energy. 6;5;053105; 2014.
    [75] Sanitjai S, Goldstein RJ. Effect of free stream turbulence on local mass transfer from a circular cylinder. International Journal of Heat and Mass Transfer. 44;15;2863-75; 2001.
    [76] Sanz R, Calles JA, Alique D, Furones L. H2 production via water gas shift in a composite Pd membrane reactor prepared by the pore-plating method. International Journal of Hydrogen Energy. 39;9;4739-48; 2014.
    [77] Sousa P, Soares A, Monteiro E, Rouboa A. A CFD study of the hydrodynamics in a desalination membrane filled with spacers. Desalination. 349;22-30; 2014.
    [78] Tao M, Guo K, Huang Z, Liu H, Liu C. A hybrid optimization method to design shapes of three-dimensional flow channels. Chemical Engineering Research and Design. 114;190-201; 2016.
    [79] Vadrucci M, Borgognoni F, Moriani A, Santucci A, Tosti S. Hydrogen permeation through Pd–Ag membranes: Surface effects and Sieverts' law. International Journal of Hydrogen Energy. 38;10;4144-52; 2013.
    [80] Wang PC, Shoup TE. Parameter sensitivity study of the Nelder–Mead Simplex Method. Advances in Engineering Software. 42;7;529-33; 2011.
    [81] Wang X-D, Huang Y-X, Cheng C-H, Jang J-Y, Lee D-J, Yan W-M, et al. An inverse geometry design problem for optimization of single serpentine flow field of PEM fuel cell. International Journal of Hydrogen Energy. 35;9;4247-57; 2010.
    [82] Wu J, Welch LW, Welsh MC, Sheridan J, Walker GJ. Spanwise wake structures of a circular cylinder and two circular cylinders in tandem. Experimental Thermal and Fluid Science. 9;3;299-308; 1994.
    [83] Xie P, Murdoch LC, Ladner DA. Hydrodynamics of sinusoidal spacers for improved reverse osmosis performance. Journal of Membrane Science. 453;92-9; 2014.
    [84] Zou L, Guo C, Xiong C. Flow characteristics of the two tandem wavy cylinders and drag reduction phenomenon. Journal of Hydrodynamics, Ser B. 25;5;737-46; 2013.

    下載圖示 校內:2020-08-01公開
    校外:2020-08-01公開
    QR CODE