研究生: |
林志成 Lin, Chi-Cheng |
---|---|
論文名稱: |
染料敏化電池之二氧化鈦層結構及固態電解質製作 Synthesis of titanium-dioxide layer and solid-state electrolyte for dye sensitized solar cells |
指導教授: |
鄧熙聖
Teng, Hsi-Sheng |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 107 |
中文關鍵詞: | 染料敏化電池 、二氧化鈦 、電洞傳輸物質 |
外文關鍵詞: | dye-sensitized solar cells, titanium-dioxide, hole transport material |
相關次數: | 點閱:61 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
本研究是利用本實驗室所發展的二次水熱法將商用二氧化鈦製備成純銳鈦礦相的二氧化鈦奈米顆粒,其粒徑大小約20nm(A20),接著加入Terpineol和ethyl cellulose調配成網印用的二氧化鈦吸收層漿料,期望能藉由研究來提升本實驗室自行製備的漿料能達到商用漿料的效果。
本研究是用網版印刷法沉積二氧化鈦奈米顆粒漿料(A20)於FTO導電玻璃基板製備成染料敏化太陽能電池的光電極,此外我們用P25混合R400的漿料當作散射層。為了提升電池的效率,我們藉由浸泡TiCl4溶液來增加二氧化鈦的比表面積以利於吸附更多的染料,從實驗結果可發現,在50℃下浸泡兩次TiCl4溶液45min其光電流比原本的70℃下浸泡一次30min有明顯的提升,效率從7.9%提升至8.73%。接著我們也比較後處理之後高溫熱處理的溫度對電池的影響,從SEM圖中發現在500℃高溫熱處理下,二氧化鈦薄膜的表面有嚴重的燒結情形,影響電解質的滲入以及染料吸附量,電池效率只有7.91%,而在450℃處理下,沒有明顯燒結情形,可得較高的效率值:8.43%。為了能充份利用入射光,我們將原本用的散射層:P25混合R400(R400是粒徑約400nm金紅石相的二氧化鈦)加入了A160(A160是粒徑約160nm 純銳鈦礦相的二氧化鈦),之後並將P25用本實驗室所製備的純銳鈦礦相粒徑約20nm(A20)的二氧化鈦來取代,調配出4種不同成份混合的散射層:(1)P25+R400、(2)P25+A160+R400、(3)A20+R400、(4) A20+A160+R400。從實驗結果可知,A20+A160+R400有較高的光電流,因而提升光電轉換效率達到9.04%。最後我們比較不同吸收層厚度的效應,發現吸收層20μm,散射層5μm時,有最高的光電流,也有最高的效率9.67%。本實驗藉由X光繞射、掃描式電子顯微鏡以及紫外光-可見光吸收光譜儀來分析二氧化鈦薄膜的性質與表面型態,再搭配IMPS、IMVS以及交流阻抗頻譜(EIS)來分析電子在二氧化鈦上傳遞的特性。
在全固態染料敏化太陽能電池研究中,我們使用CsSnI3當作電洞傳輸物質來取代原本的液態電解液,搭配N719染料組裝成全固態染料敏化太陽能電池,目前光電轉換效率達0.17%。
Abstract
In our research, we apply hydrothermal method to convert commercial TiO2 to nanoparticle in the phase of anatase. Its size is about 20nm(A20). And then we add Terpineol and ethyl cellulose to mix to transparent paste on the purpose of screen-printing. We hope to enhance the efficiency of self-made paste to the same extent as the commercial one.
In the study, the paste of TiO2 nanoparticle is deposited on the FTO conducting glass through screen-printing method in order to make electrode of DSSC.In addition,we use the paste with the mixing of P25 and R400 to be the scattering layer. With the purpose of enhancing the efficiency of batteries, the electrode is soaked in TiCl4 solution to increase the specific surface area. By the method, we hope it can adsorb as much dye as possible. With the TiO2 film soaked in TiCl4 twice for 45 minutes at 50℃, we find out the photo-current increases obviously, which compare to that soaked in TiCl4 in 70℃ for 30 minutes. Its efficiency changes from 7.9% up to 8.73%. Then we study the influence of heat treatment after the post-treatment by soaking TiCl4 solution. From the SEM image, we find out that, in the heat treatment under 500℃, the surface of TiO2 film sinters severely and affect the diffusion of electrolyte and adsorption of dye. The efficiency is only 7.91%. Under 450℃, no sintering appears and we can get higher efficiency: 8.43%. In order to utilize incident light well, we add A160 to the mixing of P25 and R400, and then use anatase(A20) instead to make 4 kinds of different blend of scattering layer:(1)P25+R400、(2)P25+A160+R400、(3)A20+R400、(4) A20+A160+R400. The results indicates that A20, A160, and R400 have higher photo current. As a result, it enhances efficiency up to 9.04%. At last , we compare the effect of thickness of the film and find out it has the highest photo current and efficiency when adsorption layer is 20μm and scattering layer is 5μm and the efficiency is 9.67%. We use X-ray, TEM, UV-Vis to analyze the material properties and surface of TiO2 film and also use the IMPS, IMVS, EIS to study the behaviors of electrons which transport on the TiO2.
In the research, we use CsSnI3 as hole transport material in lieu of the original liquid electrolyte. With N719, we assemble to solid-state dye-sensitized solar cells, recent efficiency is up to 0.17%.
第六章 參考文獻
[1] 張菀倫,“太陽光電產業先趨前瞻佈局占得有利先機 茂迪迎向太陽光電產業大未來”, 永續產業發展雙月刊, 2007, 29, 39.
[2] M.Grätzel, “Photoelectrochemical cells”, Nature, 2001, 414, 338.
[3] 莊家深, “太陽能工程-太陽電池篇”, 全華, 1998, 第一章、第二章.
[4] S. R. Wenham, M. A. Green, Silicon Solar Cells, “Progress in Photovoltaics:Research and Applications”, vol 4, p3-33 (1996)
[5] B. O’Regan, M.Grätzel, “A low-coat, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, 1991, 353, 737.
[6] Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L. Han, “Dye-Sensitized Solar Cells with Conversion Efficiency of 11.1%”, Jpn. J. Appl. Phys., 2006, 45, 25, L638.
[7] C. Y. Chen, M. K. Wang, J. Y. Li , N. Pootrakulchote, L. Alibabaei, C. H. Ngoc-le, J. D. Decoppet, J. H. Tsai, C. Gratzel, C. G. Wu, S. M. Zakeeruddin, M. Gratzel, “Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells”, ACS nano, 2009, 3, 3103.
[8] D. Cahen, G. Hodes, M. Grätzel, J. F. Guillemoles, I. Riess, “Nature of Photovoltaic Action in Dye-Sensitized Solar Cells”, J. Phys. Chem. B, 2000, 104, 2053.
[9] D. Matthews, P. Infelta, M. Grätzel, “Calculation of the photocurrent-potential characteristic for regenerative, sensitized semiconductor electrodes”, Sol. Energy Mater. Sol. Cells, 1996, 44, 119.
[10] M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells”, J. Photochem. Photobio. A, 2004, 164, 3.
[11] A. Hagfeldt, M. Grätzel, “Light-Induced Redox Reactions in Nanocrystalline Systems”, Chem. Rev., 1995, 95, 49.
[12] C. J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Grätzel, “Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications”, J. Am. Ceram. Soc., 1997, 80, 3157.
[13] K. Kalyanasundaram, M. Grätzel, “Applications of functionalized transition metal complex in photonic and optoelectronic devices”, Coord. Chem. rev., 1998, 177, 34.
[14] N.-G. Park, J. van de Lagemaat, A. J. Frank, “Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells”, J. Phys. Chem. B, 2000, 104, 8989.
[15] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, M. Grätzel, “Conversion of Light to Electricity by cis-X2Bis (2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II) Charge- Transfer Sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2 Electrodes”, J. Am. Chem. Soc., 1993, 115, 6382.
[16] G. P. Smestad, M. Grätzel, “Demonstrating Electron Transfer and Nanotechnology: A Natural Dye-Sensitized Nanocrystalline Energy Converter”, J. Chem. Educ., 1998, 75, 752.
[17] M. K. Nazeeruddin, P. Péchy, T. Renouard, S. M. Zakeerudin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, “Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells”, J. Am. Chem. Soc., 2001, 123, 1613.
[18] M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, M. Grätzel, “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers”, J. Am. Chem. Soc., 2005, 127, 16835.
[19] M. K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Grätzel, “Investigation of Sensitizer Adsorption and the Influence of Protons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2 Solar Cell”, J. Phys. Chem. B, 2003, 107, 8981.
[20] G. J. Meyer, “Efficient Light to Electrical Energy Conversion: Nanocrystalline TiO2 Films Modified with Inorganic Sensitizers”, J. Chem. Educ., 1997, 74, 652.
[21] S. Cherian, C. C. Wamser, “Adsorption and photoactivity of tetra(4-carboxyphenyl)porphyrin (TCPP) on nanoparticulate TiO2”, J. Phys. Chem. B, 2000, 104, 3624.
[22] http://www.solaronix.com/
[23] S. Y. Huang, G. Schlichthorl, A.J. Nozik, “Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cell”, J. Phys. Chem. B, 1997, 101, 2576.
[24] A. Hauch, R. Kern, J. Ferber, 2nd World Conference, Vienna, European Communities, 1998.
[25] N. Papageorgiou, M. Grätzel, P. P. Infelta, “On the Relevance of Mass Transport in Thin Layer Nanocrystalline Photoelectrochemical Solar Cells”, Sol. Energy Mater. Sol. Cells, 1996, 44(4), 405.
[26] U. Bach, D. Lupo, P. Comte, “Solid-State Dye Sensitized Mesoporous TiO2 Solar Cells with High Photo-to-electron Conversion Efficiencies”, Nature, 1998, 395, 583.
[27] J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S. Seok, “Chemical Management for Color, Efficient, and Stable Inorganic-Organic Hybrid Nanostructed Solar Cells”,Nano Letter, 2013, 13, 1764.
[28] I. Chung, B. Lee, J. He, P.H. Chang & G. Kanatzids, “All-solid-state dye-sensitized solar cells with high efficiency”,Nature.Letter, 2012 , 486.
[29] P. Wang, S. M. Zakeeruddin, I. Exnarb, M. Grätzel, “High Efficiency Dye-Sensitized Nanocrystalline Solar Cells Based on Ionic Liquid Polymer Gel Electrolyte”, Chem. Commun., 2002, 2972.
[30] E. Stathatos, P. Lianos, “A Quasi-Solid-State Dye-Sensitized Solar Cell Based on a Sol-Gel Nanocomposite Electrolyte Containing Ionic Liquid”, Chem. Mater., 2003, 15, 1825.
[31] N. Papageorgiou, W. F. Maier, M. Grätzel, “An Iodine/Triiodide Reduction Electrocatalyst for Aqueous and Organic Media”, J. Electrochem. Soc., 1996, 144, 99.
[32] A. Kay, M. Grätzel, “Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder”, Sol. Energy Mater. Sol. Cells, 1996, 44, 99.
[33] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, “Formation of Titanium Oxide Nanotube”, Langmuir, 1998, 14, 3160.
[34] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, “Titania Nanotubes Prepared by Chemical Processing”, Adv. Mater., 1999, 11, 1307.
[35] B. D. Cullity, S. R. Stock, “Elements of X-Ray Diffraction”, 3rd ed., Prentice, 2001.
[36] C. Kittel, “Introduction to Solid State Physics”, Wiley, 4th ed., 1971.
[37] M. Yan, F. Chen, J. Zhang, M. Anpo, “Preparation of Controllable Crystalline Titania and Study on the Photocatalytic Properties”, J. Phys. Chem. B, 2005, 109, 8673.
[38] http://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=2&cad=rja&ved=0CDYQFjAB&url=http%3A%2F%2Ffangang.web.nthu.edu.tw%2Fezfiles%2F198%2F1198%2Fimg%2F971%2F707Sputter.doc&ei=yRTVUdurBoimkwXmSg&usg=AFQjCNGvc-h0kyMWvUIa11vRNK8oHF_tIg&sig2=cDN2J2Gl9WbUjRP9-1vidw
[39] http://web.nchu.edu.tw/~shouyi/facilities/facilities.htm
[40] J. Krulger, R. Plass, M. Grätzel, P. J. Cameron, L. M. Peter, “Charge Transport and Back Reaction in Solid-State Dye-Sensitized Solar Cells: A Study Using Intensity-Modulated Photovoltage and Photocurrent Spectroscopy”, J. Phys. Chem. B, 2003, 107, 7536.
[41] R. Kern, R. Sastrawan, J. Ferber, R. Stangl, J. Luther, “Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions”, Electrochim. Atca, 2002, 47, 4213.
[42] F. Febregat-Santiago, J. Bisquert, E. Palomares, L. Otero, D. Kuang, S. M. Zakeeruddin, M. Grätzel, “Correlation between Photovoltaic Performance and Impedance Spectroscopy of Dye-Sensitized Solar Cells Based on Ionic Liquids”, J. Phys. Chem. C, 2007, 111, 6550.
[43] M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata, S. Isoda, “Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy”, J. Phys. Chem. B, 2006, 110 , 13872.
[44] G. Kantonisa, T. Stergiopoulosa, A. P. Katsoulidisb, P. J. Pomonisb, P. Falarasa, ” Electron dynamics dependence on optimum dye loading for an efficient dye-sensitized solar cell”, J. Photochem. Photobiol., A: Chemistry, 2011, 217, 236–241.
[45] S. Nakade, M. Matsuda, S. Kambe, Y. Saito, T. Kitamura, T. Sakata, Y. Wada, H. Mori, S. Yanagida, “Dependence of TiO2 Nanoparticle Preparation Methods and Annealing Temperature on the Efficiency of Dye-Sensitized Solar Cells”, J. Phys. Chem. B, 2002, 106, 10004-10010.
[46] 劉永進, “染料敏化太陽能電池剛性及可繞式二氧化鈦層之電泳成膜研究”, 國立成功大學化學工程研究所碩士論文, 2011.
[47] Y. J. Liou, P. T. Hsiao, L. C. Chen, Y. Y. Chu, H. S. Teng, “Structure and Electron-Conducting Ability of TiO2 Films from Electrophoretic Deposition and Paste-Coating for Dye-Sensitized Solar Cells”, J. Phys. Chem. C, 2011, 115, 25580–25589.
[48] P. T. Hsiao, Y. J. Liou, H. S. Teng, “Electron Transport Patterns in TiO2 Nanotube Arrays Based Dye-Sensitized Solar Cells under Frontside and Backside Illuminations”, J. Phys. Chem. C, 2011, 115, 15018–15024.
[49] P. T. Hsiao, Y. L. Tung, H. Teng, “Electron Transport Patterns in TiO2 Nanocrystalline Films of Dye-Sensitized Solar Cells”, J. Phys. Chem. C, 2010, 114, 6762.
[50] L. M. Peter, “Characterization and modeling of dye-sensitized solar cells”, J. Phys. Chem. C, 2007, 111, 6601.
[51] N. Kopidakis, K. D. Benkstein, J. van de Lagemaat, A. J. Frank, “Transport-Limited Recombination of Photocarriers in Dye-Sensitized Nanocrystalline TiO2 Solar Cells”, J. Phys. Chem. B, 2003, 107, 11307.
[52] K. Shum, Z. Chen, Y. Ren, “Solution-based synthesis of CsSnI3”,United States Patent Application Publication, 2012, US 2012/0306053 A1