簡易檢索 / 詳目顯示

研究生: 林志成
Lin, Chi-Cheng
論文名稱: 染料敏化電池之二氧化鈦層結構及固態電解質製作
Synthesis of titanium-dioxide layer and solid-state electrolyte for dye sensitized solar cells
指導教授: 鄧熙聖
Teng, Hsi-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 107
中文關鍵詞: 染料敏化電池二氧化鈦電洞傳輸物質
外文關鍵詞: dye-sensitized solar cells, titanium-dioxide, hole transport material
相關次數: 點閱:61下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    本研究是利用本實驗室所發展的二次水熱法將商用二氧化鈦製備成純銳鈦礦相的二氧化鈦奈米顆粒,其粒徑大小約20nm(A20),接著加入Terpineol和ethyl cellulose調配成網印用的二氧化鈦吸收層漿料,期望能藉由研究來提升本實驗室自行製備的漿料能達到商用漿料的效果。
    本研究是用網版印刷法沉積二氧化鈦奈米顆粒漿料(A20)於FTO導電玻璃基板製備成染料敏化太陽能電池的光電極,此外我們用P25混合R400的漿料當作散射層。為了提升電池的效率,我們藉由浸泡TiCl4溶液來增加二氧化鈦的比表面積以利於吸附更多的染料,從實驗結果可發現,在50℃下浸泡兩次TiCl4溶液45min其光電流比原本的70℃下浸泡一次30min有明顯的提升,效率從7.9%提升至8.73%。接著我們也比較後處理之後高溫熱處理的溫度對電池的影響,從SEM圖中發現在500℃高溫熱處理下,二氧化鈦薄膜的表面有嚴重的燒結情形,影響電解質的滲入以及染料吸附量,電池效率只有7.91%,而在450℃處理下,沒有明顯燒結情形,可得較高的效率值:8.43%。為了能充份利用入射光,我們將原本用的散射層:P25混合R400(R400是粒徑約400nm金紅石相的二氧化鈦)加入了A160(A160是粒徑約160nm 純銳鈦礦相的二氧化鈦),之後並將P25用本實驗室所製備的純銳鈦礦相粒徑約20nm(A20)的二氧化鈦來取代,調配出4種不同成份混合的散射層:(1)P25+R400、(2)P25+A160+R400、(3)A20+R400、(4) A20+A160+R400。從實驗結果可知,A20+A160+R400有較高的光電流,因而提升光電轉換效率達到9.04%。最後我們比較不同吸收層厚度的效應,發現吸收層20μm,散射層5μm時,有最高的光電流,也有最高的效率9.67%。本實驗藉由X光繞射、掃描式電子顯微鏡以及紫外光-可見光吸收光譜儀來分析二氧化鈦薄膜的性質與表面型態,再搭配IMPS、IMVS以及交流阻抗頻譜(EIS)來分析電子在二氧化鈦上傳遞的特性。
    在全固態染料敏化太陽能電池研究中,我們使用CsSnI3當作電洞傳輸物質來取代原本的液態電解液,搭配N719染料組裝成全固態染料敏化太陽能電池,目前光電轉換效率達0.17%。

    Abstract
    In our research, we apply hydrothermal method to convert commercial TiO2 to nanoparticle in the phase of anatase. Its size is about 20nm(A20). And then we add Terpineol and ethyl cellulose to mix to transparent paste on the purpose of screen-printing. We hope to enhance the efficiency of self-made paste to the same extent as the commercial one.
    In the study, the paste of TiO2 nanoparticle is deposited on the FTO conducting glass through screen-printing method in order to make electrode of DSSC.In addition,we use the paste with the mixing of P25 and R400 to be the scattering layer. With the purpose of enhancing the efficiency of batteries, the electrode is soaked in TiCl4 solution to increase the specific surface area. By the method, we hope it can adsorb as much dye as possible. With the TiO2 film soaked in TiCl4 twice for 45 minutes at 50℃, we find out the photo-current increases obviously, which compare to that soaked in TiCl4 in 70℃ for 30 minutes. Its efficiency changes from 7.9% up to 8.73%. Then we study the influence of heat treatment after the post-treatment by soaking TiCl4 solution. From the SEM image, we find out that, in the heat treatment under 500℃, the surface of TiO2 film sinters severely and affect the diffusion of electrolyte and adsorption of dye. The efficiency is only 7.91%. Under 450℃, no sintering appears and we can get higher efficiency: 8.43%. In order to utilize incident light well, we add A160 to the mixing of P25 and R400, and then use anatase(A20) instead to make 4 kinds of different blend of scattering layer:(1)P25+R400、(2)P25+A160+R400、(3)A20+R400、(4) A20+A160+R400. The results indicates that A20, A160, and R400 have higher photo current. As a result, it enhances efficiency up to 9.04%. At last , we compare the effect of thickness of the film and find out it has the highest photo current and efficiency when adsorption layer is 20μm and scattering layer is 5μm and the efficiency is 9.67%. We use X-ray, TEM, UV-Vis to analyze the material properties and surface of TiO2 film and also use the IMPS, IMVS, EIS to study the behaviors of electrons which transport on the TiO2.
    In the research, we use CsSnI3 as hole transport material in lieu of the original liquid electrolyte. With N719, we assemble to solid-state dye-sensitized solar cells, recent efficiency is up to 0.17%.

    目錄 中文摘要..................................................................................................... I Abstract....................................................................................................... III 誌謝....................................................................................................... ..... V 目錄............................................................................................................. VII 表目錄......................................................................................................... XI 圖目錄......................................................................................................... XII 第一章 緒論………..………………………………...………… 1 1-1 前言……………………………………………………...………… 1 1-2 半導體簡介………………………………………………………. . 3 1-3 光伏特效應(photovoltaic effect)………………………………….. 6 1-4 各種太陽能電池發展現況及比較………………………………. . 9 1-5 研究動機與目的……………………………………………….…. 13 第二章 文獻回顧與理論說明..................................................... 14 2-1 染料敏化太陽能電池....................................................................... 14 2-1.1 裝置構造…………………………………............................... 14 2-1.2 工作原理................................................................................... 15 2-1.3 逆反應(back reaction)............................................................... 16 2-2 奈米結晶多孔膜電極....................................................................... 18 2-3 染料敏化劑(dye sensitizer).............................................................. 22 2-4 電解質(electrolyte)........................................................................... 26 2-5 相對電極 (counter electrode).......................................................... 29 第三章 實驗方法與儀器原理介紹………................................. 30 3-1 實驗藥品........................................................................................... 30 3-2 實驗儀器設備................................................................................... 32 3-3 二氧化鈦奈米顆粒paste的製作與相關測試............................. … 33 3-3.1 水熱法合成二氧化鈦奈米顆粒............................................... 33 3-3.2製備二氧化鈦奈米顆粒paste................................................. . 33 3-3.3 XRD繞射分析............................................................................ 36 3-3.4 掃描式電子顯微鏡 (scanning electron microscope, SEM) 38 3-3.5射頻濺鍍(radiofrequency sputter) ..... ..... ..... ..... ..... ..... ..... ... 39 3-4組裝染料敏化太陽能電池................................................................ 41 3-4.1 FTO導電玻璃基板表面處理.................................................... 41 3-4.2 Screen pringing法製備二氧化鈦薄膜電極.................... .. .. .. . 41 3-4.3 TiCl4溶液配製與後處理................ ................ ................ ......... 42 3-4.4 染料敏化劑的吸附................................................................... 42 3-4.5 電解質的配製........................................................................... 42 3-4.6 相對電極的製備....................................................................... 43 3-4.7 組裝染料敏化太陽能電池....................................................... 43 3-5 製作固態染料敏化太陽能電池................ ................ ................ .... 45 3-5.1 FTO導電玻璃基板表面處理.............. .............. .............. ....... 45 3-5.2 Screen pringing法製備二氧化鈦薄膜電極....... ....... ....... ...... 45 3-5.3染料敏化劑的吸附................................................................... 46 3-5.4 製作固態電解質CsSnI3.......... .......... .......... .......... .......... .... 46 3-5.5 組裝固態染料敏化太陽能電池.... .... .... .... .... .... .... .... .... .. 46 3-6 電池的電性測試............................................................................... 47 3-6.1 I-V特性曲線的測試.................................................................. 47 3-6.2 IMPS與IMVS的測量................................................................ 49 3-6.3 Electrochemical Impedance Spectroscopy (EIS)........................ 52 第四章 結果與討論..................................................................... 54 4-1 後處理其浸泡溫度與時間對染料敏化電池的影響....... .... .... .... 54 4-1.1 前言........................................................................................... 54 4-1.2 電池效率表現........................................................................... 55 4-1.3 紫外光-可見光吸收光譜分析................................................. 57 4-2 不同熱處理溫度對染料敏化太陽能電池的影響........................... 58 4-2.1 前言........................................................................................... 58 4-2.2 不同高溫熱處理下二氧化鈦薄膜表面的SEM分析........... ... 59 4-2.3 電池效率表現........................................................................... 61 4-3 不同成份的散射層對染料敏化太陽能電池的影響.................... .. 63 4-3.1 前言........................................................................................... 63 4-3.2 XRD分析.................................................. ......... ......... ......... 64 4-3.3 電池效率表現........................................................................... 65 4-3.4 IMPS分析........................................................... ...... ...... ...... .. 67 4-3.5IMVS分析.......................................................... ...... ...... ...... ... 71 4-3.6 交流阻抗頻譜(EIS)分析.... .... .... .... .... .... .... .... .... .... .... .... 74 4-4 不同厚度的二氧化鈦層對染料敏化太陽能電池的影響............... 79 4-4.1 前言........................................................................................... 79 4-4.2 電池效率表現........................................................................... 80 4-4.3 IMPS分析..................................................................... ........ .... 82 4-4.4 IMVS分析............................. ............................. ...................... 86 4-4.5 交流阻抗頻譜(EIS)分析........................................................... 89 4-5 製備固態電解質應用於染料敏化太陽能電池............... ........... ... 96 4-5.1 前言........................................................................................... 96 4-5.2 XRD 分析.................................................................................. 97 4-5.3 電池效率表現........................................................... .......... .... 98 第五章 結論與建議..................................................................... 100 第六章 參考文獻......................................................................... 102 表目錄 表4-1 不同條件下後處理之電池各項參數(Voc、Jsc、F.F.、η)……… 56 表4-2 不同高溫處理下之電池各項參數(Voc、Jsc、F.F.、η)... ……… 62 表4-3 不同散射層成份組裝成電池之各項參數(Voc、Jsc、F.F.、η).................................................................................................. 66 表4-4 不同光電極散射層組裝成於藍光與紅光下分析的IMPS結果經計算後,所得到的電子傳遞時間常數................................ .... 70 表4-5 不同光電極散射層組裝成電池於藍光與紅光下分析的 IMVS結果經計算後,所得到的電子生存時間常數.................. 73 表4-6 不同厚度的光電極薄膜組裝成電池的交流阻抗頻譜分析結果經適套後,所得到模擬元件的參數......................................... 78 表4-7 不同厚度的光電極薄膜組裝成電池的交流阻抗頻譜分析結果經適套後,所得到模擬元件的參數........................................ 93 表4-8 全固態染料敏化太陽能電池之各項參數(Voc、Jsc、F.F.、η)............................... ........................... .......... .......... .......... ... 99 圖目錄 圖1 1 各種化合物半導體的能帶結構圖………………………….... 5 圖1-2 pn-junctiontion示意簡圖:在接面附近由於電子電洞流的擴 散,形成正負離子而產生電場,此區域一般稱為空乏區或 空間電荷區…………………………………………………… 8 圖2-1 染料敏化太陽能電池裝置圖.................................................... 14 圖2-2 染料敏化太陽能電池工作原理示意圖.................................... 16 圖2-3 染料敏化太陽能電池各反應動力學比較示意圖.................... 17 圖2-4 anatase、rutile和brookite的結晶結構示意圖....................... 19 圖2-5 N3及N719染料的化學結構.................................................... 24 圖2-6 染料分子能階示意圖................................................................ 24 圖2-7 (a)染料透過carboxylate groups與TiO2表面形成ester linkages (b)染料分子與TiO2其它的鍵結模式....................... 25 圖2-8 spiro-MeOTAD固態電解質的元件結構圖............................. 25 圖3-1 高溫高壓反應器 ( autoclave ).................................................. 34 圖3-2 吸收層二氧化鈦奈米顆粒paste 配置流程圖......................... 35 圖3-3 散射層二氧化鈦奈米顆粒paste 配置流程圖......................... 35 圖3-4 X光對晶體繞射的示意圖........................................ ............ .. 37 圖3-5 電子束與試片作用後的結果示意圖....................................... 38 圖3-6 射頻濺鍍機圖............. ............. ............. ............. ............. ...... 40 圖3-7 射頻濺鍍機內示意圖................. . ................. . ................. . .... 40 圖3-8 染料敏化太陽能電池的組裝流程圖........................................ 44 圖3-9 染料敏化太陽能電池的電池光電轉換效率測試系統............ 48 圖3-10 I-V 特性曲線示意圖................................................................ 49 圖3-11 (a)在IMPS實驗光源照射及光電流在TiO2膜上流動方向 的示意圖; (b)入射光與光電流之相角差示意圖..................... 50 圖3-12 典型IMPS應答圖形。(fmin為應答中數值最負點的頻率)..... 51 圖3-13 染料敏化太陽能電池之等效電路圖........................................ 53 圖3-14 染料敏化太陽能電池之交流阻抗圖譜.................................... 53 圖4-1 不同條件下後處理之電池於100mW/cm2、AM1.5G模擬太陽光下測試之應答曲線........................................................... 56 圖4-2 將不同後處理條件浸泡染料後,經 KOH 溶液脫附染料,進行UV-vis吸收度測試,所得吸收度對應光波長圖............. 57 圖4-3 不同高溫熱處理下二氧化鈦薄膜之表面 SEM 圖。(a)、(b):450℃;(c)、(d):500℃............................... .......... .......... .... 60 圖4-4 工作電極後處理後經不同高溫熱處理後組裝成電池於100 mW/cm2、AM1.5G模擬太陽光下測試之應答曲線............... 62 圖4-5 A20、A160、R400三種不同的二氧化鈦顆粒XRD分析比較圖................................................ ................ ................ ........ 64 圖4-6 不同散射層成份之電池於100mW/cm2、AM1.5G模擬太陽光下測試之應答曲線........................................................ ... ... 66 圖4-7 網印法製備不同光電極薄膜散射層並組裝成電池,進行 IMPS測試的Nyquist結果圖。測試條件控制在short circuit 環境,以波長455 nm的藍光LED為光源、強度設定為150 W/m2,搭配光強度5%之震盪測試................ ................ ........ 69 圖4-8 網印法製備不同光電極薄膜散射層並組裝成電池,進行 IMPS測試的Nyquist結果圖。測試條件控制在short circuit 環境,以波長625 nm的紅光LED為光源、強度設定為100 W/m2,搭配光強度5%之震盪測試................ ................ ........ 69 圖4-9 Trap-free及trap-limited傳遞模式的示意圖。靠近FTO所 產生的電子因為trap state被填滿而不太受trap影響,以trap free的模式傳遞;遠離FTO之電子傳遞時受到unoccupied states影響,電子不斷進行trap-detrap而使得電子傳遞速率 降低........... ........... ........... ........... ........... ........... ........... ........ 70 圖4-10 網印法製備不同光電極薄膜散射層並組裝成電池,進行IMVS測試的Nyquist結果圖。測試條件控制在open circuit環境,以波長455 nm的藍光LED為光源、強度設定為150 W/m2,搭配光強度5 %之震盪測試......................................... 72 圖4-11 網印法製備不同光電極薄膜散射層並組裝成電池,進行IMVS測試的Nyquist結果圖。測試條件控制在open circuit環境,以波長625 nm的紅光LED為光源、強度設定為100 W/m2,搭配光強度5 %之震盪測試......................................... 72 圖4-12 不同散射層的光電極薄膜組裝成電池後,控制電池於開環 的條件下,振幅為10 mV,以光強度100 mW/cm2、AM1.5G 模擬太陽光進行交流阻抗測試之結果。(a)圖形標記為測試 結果,實線為配合模擬等效電路、適套後的結果(b)等效模 擬電路元件圖............................ ............................ ................. 77 圖4-13 不同厚度的二氧化鈦層組裝成電池於100 mW/cm2、AM1.5G模擬太陽光下測試之應答曲線............................. ... 80 圖4-14 從電池特性曲線得到的各個電池參數對應不同膜厚做圖.. . 81 圖4-15 不同厚度的光電極薄膜組裝成電池,進行IMPS測試的 Nyquist結果圖。測試條件控制在short circuit環境,分別 以波長455 nm的藍光與波長625 nm的紅光LED為光源、 強度設定為藍光150 W/m2、紅光100 W/m2,搭配光強度 5%之震盪測試................. ................. ................. ................. .. 84 圖4-16 Trap-free及trap-limited傳遞模式的示意圖。靠近FTO所 產生的電子因為trap state被填滿而不太受trap影響,以trap free的模式傳遞;遠離FTO之電子傳遞時受到unoccupied states影響,電子不斷進行trap-detrap而使得電子傳遞速率 降低........... ........... ........... ........... ........... ........... ........... ........ 85 圖4-17 不同厚度的電極薄膜並組裝成電池,在short circuit環境, 以波長425 nm的藍光與波長625 nm的紅光LED為光源、 強度設定為藍光150 W/m2、紅光100 W/m2,,搭配光強 度5 %震盪量測IMPS所得之電子傳遞時間對應不同薄膜 厚度的結果圖...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... 85 圖4-18 不同厚度的光電極薄膜組裝成電池,進行IMVS測試的 Nyquist結果圖。測試條件控制在open circuit環境,分別 以波長455 nm的藍光LED與波長625 nm的紅光LED為 光源、強度設定為藍光150W/m2、紅光100W/m2,搭配光 強度5 %之震盪測試.... .... .... .... .... .... .... .... .... .... .... .... .... 87 圖4-19 不同厚度的電極薄膜並組裝成電池,在open circuit環境, 以波長425 nm的藍光與波長625 nm的紅光LED為光源、 強度設定為藍光150 W/m2、紅光100 W/m2,搭配光強度 5%震盪量測IMVS所得之電子生存時間對應不同薄膜厚 度的結果圖.... .... .... ... .... .... .... ... .... .... .... ... .... .... .... ... .... 88 圖4-20 不同厚度的光電極薄膜組裝成電池後,控制電池於開環的條件下,振幅為10 mV,以光強度100 mW/cm2、AM 1.5G模擬太陽光進行交流阻抗測試之結果。 (a)圖形標記為測試結果,實線為配合模擬等效電路、適套後的結果 (b)等 效模擬電路元件圖.................................................................... 92 圖4-21 二氧化鈦薄膜內電子的總再結合阻力Rct 與總傳遞阻力Rt對應不同膜厚作圖.................................................................... 93 圖4-22 二氧化鈦薄膜的表面電容(Cµ)對應不同膜厚作圖................. 94 圖4-23 二氧化鈦薄膜內電子的(a)電子收集效率、(b)擴散長度對應不同膜厚做圖............................................................................ 95 圖4-24 (a)理論計算而得CsSnI3 XRD分析圖;(b)自行製備而成的CsSnI3 XRD分析圖........................................................ .... .... 97 圖4-25 全固態染料敏化太陽能電池於 100mW/ cm2、AM1.5G模擬太陽光下測試之應答曲線................................................... 99

    第六章 參考文獻
    [1] 張菀倫,“太陽光電產業先趨前瞻佈局占得有利先機 茂迪迎向太陽光電產業大未來”, 永續產業發展雙月刊, 2007, 29, 39.
    [2] M.Grätzel, “Photoelectrochemical cells”, Nature, 2001, 414, 338.
    [3] 莊家深, “太陽能工程-太陽電池篇”, 全華, 1998, 第一章、第二章.
    [4] S. R. Wenham, M. A. Green, Silicon Solar Cells, “Progress in Photovoltaics:Research and Applications”, vol 4, p3-33 (1996)
    [5] B. O’Regan, M.Grätzel, “A low-coat, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, 1991, 353, 737.
    [6] Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L. Han, “Dye-Sensitized Solar Cells with Conversion Efficiency of 11.1%”, Jpn. J. Appl. Phys., 2006, 45, 25, L638.
    [7] C. Y. Chen, M. K. Wang, J. Y. Li , N. Pootrakulchote, L. Alibabaei, C. H. Ngoc-le, J. D. Decoppet, J. H. Tsai, C. Gratzel, C. G. Wu, S. M. Zakeeruddin, M. Gratzel, “Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells”, ACS nano, 2009, 3, 3103.
    [8] D. Cahen, G. Hodes, M. Grätzel, J. F. Guillemoles, I. Riess, “Nature of Photovoltaic Action in Dye-Sensitized Solar Cells”, J. Phys. Chem. B, 2000, 104, 2053.
    [9] D. Matthews, P. Infelta, M. Grätzel, “Calculation of the photocurrent-potential characteristic for regenerative, sensitized semiconductor electrodes”, Sol. Energy Mater. Sol. Cells, 1996, 44, 119.
    [10] M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells”, J. Photochem. Photobio. A, 2004, 164, 3.
    [11] A. Hagfeldt, M. Grätzel, “Light-Induced Redox Reactions in Nanocrystalline Systems”, Chem. Rev., 1995, 95, 49.
    [12] C. J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Grätzel, “Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications”, J. Am. Ceram. Soc., 1997, 80, 3157.
    [13] K. Kalyanasundaram, M. Grätzel, “Applications of functionalized transition metal complex in photonic and optoelectronic devices”, Coord. Chem. rev., 1998, 177, 34.
    [14] N.-G. Park, J. van de Lagemaat, A. J. Frank, “Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells”, J. Phys. Chem. B, 2000, 104, 8989.
    [15] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, M. Grätzel, “Conversion of Light to Electricity by cis-X2Bis (2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II) Charge- Transfer Sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2 Electrodes”, J. Am. Chem. Soc., 1993, 115, 6382.
    [16] G. P. Smestad, M. Grätzel, “Demonstrating Electron Transfer and Nanotechnology: A Natural Dye-Sensitized Nanocrystalline Energy Converter”, J. Chem. Educ., 1998, 75, 752.
    [17] M. K. Nazeeruddin, P. Péchy, T. Renouard, S. M. Zakeerudin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, “Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells”, J. Am. Chem. Soc., 2001, 123, 1613.
    [18] M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, M. Grätzel, “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers”, J. Am. Chem. Soc., 2005, 127, 16835.
    [19] M. K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Grätzel, “Investigation of Sensitizer Adsorption and the Influence of Protons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2 Solar Cell”, J. Phys. Chem. B, 2003, 107, 8981.
    [20] G. J. Meyer, “Efficient Light to Electrical Energy Conversion: Nanocrystalline TiO2 Films Modified with Inorganic Sensitizers”, J. Chem. Educ., 1997, 74, 652.
    [21] S. Cherian, C. C. Wamser, “Adsorption and photoactivity of tetra(4-carboxyphenyl)porphyrin (TCPP) on nanoparticulate TiO2”, J. Phys. Chem. B, 2000, 104, 3624.
    [22] http://www.solaronix.com/
    [23] S. Y. Huang, G. Schlichthorl, A.J. Nozik, “Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cell”, J. Phys. Chem. B, 1997, 101, 2576.
    [24] A. Hauch, R. Kern, J. Ferber, 2nd World Conference, Vienna, European Communities, 1998.
    [25] N. Papageorgiou, M. Grätzel, P. P. Infelta, “On the Relevance of Mass Transport in Thin Layer Nanocrystalline Photoelectrochemical Solar Cells”, Sol. Energy Mater. Sol. Cells, 1996, 44(4), 405.
    [26] U. Bach, D. Lupo, P. Comte, “Solid-State Dye Sensitized Mesoporous TiO2 Solar Cells with High Photo-to-electron Conversion Efficiencies”, Nature, 1998, 395, 583.
    [27] J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S. Seok, “Chemical Management for Color, Efficient, and Stable Inorganic-Organic Hybrid Nanostructed Solar Cells”,Nano Letter, 2013, 13, 1764.
    [28] I. Chung, B. Lee, J. He, P.H. Chang & G. Kanatzids, “All-solid-state dye-sensitized solar cells with high efficiency”,Nature.Letter, 2012 , 486.
    [29] P. Wang, S. M. Zakeeruddin, I. Exnarb, M. Grätzel, “High Efficiency Dye-Sensitized Nanocrystalline Solar Cells Based on Ionic Liquid Polymer Gel Electrolyte”, Chem. Commun., 2002, 2972.
    [30] E. Stathatos, P. Lianos, “A Quasi-Solid-State Dye-Sensitized Solar Cell Based on a Sol-Gel Nanocomposite Electrolyte Containing Ionic Liquid”, Chem. Mater., 2003, 15, 1825.
    [31] N. Papageorgiou, W. F. Maier, M. Grätzel, “An Iodine/Triiodide Reduction Electrocatalyst for Aqueous and Organic Media”, J. Electrochem. Soc., 1996, 144, 99.
    [32] A. Kay, M. Grätzel, “Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder”, Sol. Energy Mater. Sol. Cells, 1996, 44, 99.
    [33] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, “Formation of Titanium Oxide Nanotube”, Langmuir, 1998, 14, 3160.
    [34] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, “Titania Nanotubes Prepared by Chemical Processing”, Adv. Mater., 1999, 11, 1307.
    [35] B. D. Cullity, S. R. Stock, “Elements of X-Ray Diffraction”, 3rd ed., Prentice, 2001.
    [36] C. Kittel, “Introduction to Solid State Physics”, Wiley, 4th ed., 1971.
    [37] M. Yan, F. Chen, J. Zhang, M. Anpo, “Preparation of Controllable Crystalline Titania and Study on the Photocatalytic Properties”, J. Phys. Chem. B, 2005, 109, 8673.
    [38] http://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=2&cad=rja&ved=0CDYQFjAB&url=http%3A%2F%2Ffangang.web.nthu.edu.tw%2Fezfiles%2F198%2F1198%2Fimg%2F971%2F707Sputter.doc&ei=yRTVUdurBoimkwXmSg&usg=AFQjCNGvc-h0kyMWvUIa11vRNK8oHF_tIg&sig2=cDN2J2Gl9WbUjRP9-1vidw
    [39] http://web.nchu.edu.tw/~shouyi/facilities/facilities.htm
    [40] J. Krulger, R. Plass, M. Grätzel, P. J. Cameron, L. M. Peter, “Charge Transport and Back Reaction in Solid-State Dye-Sensitized Solar Cells: A Study Using Intensity-Modulated Photovoltage and Photocurrent Spectroscopy”, J. Phys. Chem. B, 2003, 107, 7536.
    [41] R. Kern, R. Sastrawan, J. Ferber, R. Stangl, J. Luther, “Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions”, Electrochim. Atca, 2002, 47, 4213.
    [42] F. Febregat-Santiago, J. Bisquert, E. Palomares, L. Otero, D. Kuang, S. M. Zakeeruddin, M. Grätzel, “Correlation between Photovoltaic Performance and Impedance Spectroscopy of Dye-Sensitized Solar Cells Based on Ionic Liquids”, J. Phys. Chem. C, 2007, 111, 6550.
    [43] M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata, S. Isoda, “Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy”, J. Phys. Chem. B, 2006, 110 , 13872.
    [44] G. Kantonisa, T. Stergiopoulosa, A. P. Katsoulidisb, P. J. Pomonisb, P. Falarasa, ” Electron dynamics dependence on optimum dye loading for an efficient dye-sensitized solar cell”, J. Photochem. Photobiol., A: Chemistry, 2011, 217, 236–241.
    [45] S. Nakade, M. Matsuda, S. Kambe, Y. Saito, T. Kitamura, T. Sakata, Y. Wada, H. Mori, S. Yanagida, “Dependence of TiO2 Nanoparticle Preparation Methods and Annealing Temperature on the Efficiency of Dye-Sensitized Solar Cells”, J. Phys. Chem. B, 2002, 106, 10004-10010.
    [46] 劉永進, “染料敏化太陽能電池剛性及可繞式二氧化鈦層之電泳成膜研究”, 國立成功大學化學工程研究所碩士論文, 2011.
    [47] Y. J. Liou, P. T. Hsiao, L. C. Chen, Y. Y. Chu, H. S. Teng, “Structure and Electron-Conducting Ability of TiO2 Films from Electrophoretic Deposition and Paste-Coating for Dye-Sensitized Solar Cells”, J. Phys. Chem. C, 2011, 115, 25580–25589.
    [48] P. T. Hsiao, Y. J. Liou, H. S. Teng, “Electron Transport Patterns in TiO2 Nanotube Arrays Based Dye-Sensitized Solar Cells under Frontside and Backside Illuminations”, J. Phys. Chem. C, 2011, 115, 15018–15024.
    [49] P. T. Hsiao, Y. L. Tung, H. Teng, “Electron Transport Patterns in TiO2 Nanocrystalline Films of Dye-Sensitized Solar Cells”, J. Phys. Chem. C, 2010, 114, 6762.
    [50] L. M. Peter, “Characterization and modeling of dye-sensitized solar cells”, J. Phys. Chem. C, 2007, 111, 6601.
    [51] N. Kopidakis, K. D. Benkstein, J. van de Lagemaat, A. J. Frank, “Transport-Limited Recombination of Photocarriers in Dye-Sensitized Nanocrystalline TiO2 Solar Cells”, J. Phys. Chem. B, 2003, 107, 11307.
    [52] K. Shum, Z. Chen, Y. Ren, “Solution-based synthesis of CsSnI3”,United States Patent Application Publication, 2012, US 2012/0306053 A1

    下載圖示 校內:2018-08-02公開
    校外:2018-08-02公開
    QR CODE