簡易檢索 / 詳目顯示

研究生: 彭志維
Peng, Chih-Wei
論文名稱: 大白鼠會陰神經調控對膀胱儲尿與排尿的影響
Effects of the Neuromodulation of Pudendal Nerves on Bladder Continence and Emptying in the Rat
指導教授: 陳家進
Chen, Jia-Jin
Warren M. Grill
Warren M. Grill
學位類別: 博士
Doctor
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 136
中文關鍵詞: 尿液滯留應力性尿失禁會陰神經外尿道括約肌下泌尿道電刺激血清素
外文關鍵詞: urine retention, stress urinary incontinence, serotonergic, pudendal nerve, external urethral sphincter, lower urinary tract, electrical stimulation
相關次數: 點閱:196下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 下泌尿道主要功能為儲尿與週期性排尿,此功能需膀胱與尿道出口(包含膀胱頸、尿道與外尿道括約肌)兩單位呈現交互協調活動完成。大白鼠會陰神經(pudendal nerve)起源於第六腰椎至第一薦椎脊髓區間,此神經包含一條運動神經支配外尿道括約肌(external urethral sphincter),以及一條感覺神經分支分佈在尿道周圍或外陰部區域。會陰神經切斷除了癱瘓外尿道括約肌的活動,同時也抑制會陰-膀胱反射(pudendal-bladder reflex),因此造成尿道阻力下降、排尿效率低落,以及餘尿增加。
    此研究主要目的是藉由損傷大白鼠會陰神經方式,建立一個兼具應力性尿失禁(stress urinary incontinence)以及尿液滯留(urine retention)的動物模式,然後利用此動物模式評估血清素藥物以及電刺激方式恢復下泌尿道功能的可行性。本研究主要包含四個實驗分別為,(1)建立慢性會陰神經損傷動物模式,(2)檢視會陰傳入與傳出神經在排尿反射過程中扮演的角色,(3)藥物治療恢復下泌尿道功能,以及(4)藉由電刺激會陰傳入神經方式增進下泌尿道功能。
    本研究首先證實大白鼠接受會陰神經切斷六週後,明顯降低漏尿壓力點(leak point pressure)數值,並且產生不正常外尿道括約肌肌電圖(EUS-EMG)和膀胱壓力圖(cystometrograph) ,以上結果顯示神經損傷不只造成尿道阻力下降同時也會造成排尿效率低落,因此會陰神經切斷是一個適合做為應力性尿失禁與尿液滯留研究使用的動物模式。後續實驗則進一步證明,一個有效率的膀胱排尿反射,會陰感覺神經與運動神經兩者皆扮演相當重要的角色;然而會陰傳入(afferents)神經與會陰傳出(efferents)神經相較之下,排尿效率似乎主要由會陰傳入神經主宰。另一方面,以8-OH-DPAT施打於我們所建立的會陰神經損傷動物模式時,明顯改變整個外尿道括約肌肌電圖活動型式,並且增進排尿效率,但卻沒有明顯提升膀胱出口阻力,這可能是由於會陰神經切斷後造成永久的會陰-交感神經反射損傷。最後,本研究結果顯示狀態性(conditional)與連續性(continuous)的會陰傳入神經電刺激施行於急性會陰神經損傷大白鼠,藉由調控電流大小可以達成選擇性控制膀胱儲尿與排尿的目的。
    綜合言之,本研究提供我們更深入瞭解大白鼠會陰傳入與傳出神經在排尿反射所扮演的角色,而我們所建立的會陰神經損傷模式,未來則可更進一步應用於各種應力性尿失禁與尿液滯留相關研究。另一方面8-OH-DPAT增進排尿效率但是並沒有明顯提升膀胱出口阻力數值,此結果與臨床上病灶於會陰神經損傷的尿失禁病患,使用duloxetine的藥物時常產生不同的治療效果,有顯著臨床相關意義,然而未來仍需進一步進行電生理的實驗,探討改變血清素藥物的效果的生理機制。此外,電刺激會陰傳入神經成功地選擇性控制膀胱功能,顯示會陰神經電刺激在未來或許可以提供尿液滯留病患以及其他下泌尿道障礙病人一種新的電刺激模式。

    The primary functions of the lower urinary tract (LUT) are storage and periodic elimination of urine. These functions require reciprocal coordination of the urinary bladder and the outlet including bladder neck, urethra, and external urethral sphincter (EUS). The pudendal nerve in rat originated from L6-S1 nerve trunk, which contains one motor branch innervated the EUS muscle and one sensory branch innervated sensory receptors of periurethral or genital areas. Transection of pudendal nerves could eliminate the EUS activity and pudendal-bladder reflex, which leads to decrease urethral outlet resistance and voiding efficiency as well as increase residual urine.
    The main objectives in this study are to setup a stress urinary incontinence (SUI) and a urine retention models in the rat by pudendal nerve injury, and then we utilize the animal models to evaluate the possibility of using serotonergic agent and electrical stimulation approaches to restore the LUT functions. Four major experiments were conducted in this study: (1) the setup of chronic pudendal nerve injured animal model; (2) examination of roles of pudendal nerve afferents and efferents in micturition reflexes; (3) restoration of LUT functions by pharmacological treatment and (4) improvement of LUT functions by electrical stimulation of pudendal afferents.
    Our results initially demonstrated that 6 weeks following pudendal nerve transections, rats exhibit a marked reduction in leak point pressure (LPP) values as well as abnormal EUS-electromyogram (EMG) and cystometrograph (CMG), which indicated the decrease in bladder outlet resistance and inefficient voiding. Thus, our results indicated that pudendal nerve transection(s) is a suitable animal model to study SUI as well as urine retention. Subsequent experiments manifested that the roles of pudendal sensory and motor components both appear to be important for an efficient bladder emptying reflex. However, the voiding efficiency seems to be dominated by pudendal nerve afferents rather than pudendal nerve efferents. On the other hand, 8-OH-DPAT significantly altered the patterns of EUS-EMG activity and improved voiding efficiency in our established pudendal nerve injured rat model but did not elevate the bladder outlet resistance which may be due to the permanent impairment of pudendal-lumbar sympathetic reflex after pudendal nerve transections. Finally, the study showed that both conditional and continuous electrical stimulation of pudendal nerve afferents could selectively control bladder continence and emptying by adjusting the stimulation strengths in acute pudendal nerve injured rats.
    In summary, the present study contributes to the understanding of the role of pudendal nerve afferents and efferents in micturition reflexes in the rat. Furthermore, our developed pudendal nerve injured model could further be applied in various studies related to SUI or urine retention. 8-OH-DPAT did not elevate the value of bladder outlet resistance but improved voiding efficiency, which is clinically relevant because subjects with SUI induced by pudendal nerve damage the drugs like duloxetine might have different effects. Thus, further electrophysiological experiments are needed to investigate the physiological mechanisms of the changes in the effect of 5-HT drugs. In addition the electrical stimulation of pudendal nerve afferents was successfully applied to selectively control bladder functions. Our results support that the pudendal nerve stimulation may provide a new stimulation scheme to restore bladder emptying in persons with urinary retention as well as other LUT dysfunctions.

    Chinese Abstract i Abstract iii Preface vi Table of Contents vii List of Tables xii List of Figures xiii Nomenclature xviii Chapter 1 Introduction 1 1.1 Anatomy and physiology of the lower urinary tract 1 1.2 The role of pudendal nerve in micturition reflexes 2 1.3 Stress urinary incontinence 4 1.4 Pharmacological effect of serotonin on stress urinary incontinence 5 1.5 Electrical stimulation treatments in urine retention 7 1.6 The aims of this study 10 Chapter 2 Methodology 13 2.1 Methods for the setup of chronic pudendal nerve injured animal model 13 2.1.1 CMG and EUS EMG recordings 14 2.1.2 LPP testing 16 2.1.3 Bladder weight and histological examination 16 2.2 Methods for examining the roles of pudendal afferents and efferents in micturition reflexes 17 2.2.1 Acute selective pudendal nerve transactions 18 2.2.2 Intraurethral administration of lidocaine or acetic acid 19 2.2.3 Neuromuscular blockade 20 2.3 Methods for the restoration of LUT functions by pharmacological treatment 20 2.3.1 CMG and EMG recordings 21 2.3.2 Administration of drug 22 2.3.3 LPP Testing 22 2.4 Methods for the improvement of LUT functions by electrical stimulation of pudendal afferents 23 2.4.1 Conditional electrical stimulation during isovolumetric bladder contractions 25 2.4.2 Conditional electrical stimulation during continuous infusion cystometry 26 2.4.3 Continuous electrical stimulation during continuous infusion cystometry 27 2.5 Quantification and analysis of results 27 2.5.1 Quantification for cystometric measurements 27 2.5.2 Quantification for EUS EMG activity 28 2.5.3 Statistic analysis 29 Chapter 3 Results 30 3.1 The setup of chronic pudendal nerve injured animal model 30 3.1.1 Changes in LPP value 30 3.1.2 Changes in bladder activity during CMG 31 3.1.3 Changes in EUS EMG activity 33 3.1.4 Changes in bladder weight and histological examination 38 3.2 Roles of pudendal nerve afferents and efferents in micturition reflexes in normal rats 41 3.2.1 Effects of selective transection of pudendal nerve branches 41 3.2.2 Effects of intraurethral lidocaine 47 3.2.3 Effects of intraurethral acetic acid 52 3.2.4 Effects of neuromuscular blockade agents 55 3.3 Restoration of LUT functions by pharmacological treatment 57 3.3.1 Effects of the serotonergic drug on bladder activity during CMG 57 3.3.2 Effects of the serotonergic drug on EUS-EMG activity 63 3.3.3 Effects of the serotonergic drug on LPP value 68 3.4 Improvement of LUT functions by electrical stimulation of pudendal afferents 69 3.4.1 Electrical stimulation threshold of the pudendal-pudendal reflex 69 3.4.2 Effects of conditional electrical stimulation during isovolumetric bladder contractions 70 3.4.3 Effects of conditional electrical stimulation following unilateral sensory nerve transection during continuous infusion cystometry 75 3.4.4 Effects of conditional electrical stimulation following bilateral sensory nerve transection during continuous infusion cystometry 78 3.4.5 Effects of continuous electrical stimulation following unilateral sensory nerve transection during continuous infusion cystometry 80 Chapter 4 Discussions 82 4.1 The setup of chronic pudendal nerve injured animal model 82 4.2 The roles of pudendal afferents and efferents in micturition reflexes 89 4.3 The restoration of LUT functions by pharmacological treatment 95 4.4 The improvement of LUT functions by electrical stimulation of pudendal afferents 102 Chapter 5 Conclusions and Prospects 111 Appendix 113 Appendix A 113 Appendix B 114 Appendix C 115 Appendix D 116 Appendix E 117 Appendix F 118 Appendix G 119 Appendix H 120 Appendix I 121 References 123

    Aboseif S, Tamaddon K, Chalfin S, Freedman S, Mourad MS, Chang JH & Kaptein JS (2002). Sacral neuromodulation in functional urinary retention: an effective way to restore voiding. BJU Int 90, 662–5.
    Anderson KE (1993). Pharmacology of lower urinary tract smooth muscles and penile erectile tissues. Pharmacol Rev 45, 253-308.
    Barrington FJF (1931). The component reflexes of micturition in the cat, Parts I and II. Brain 54, 177–88.
    Barrington FJF (1941). The component reflexes of micturition in the cat, Part III. Brain 64, 239–43.
    Besson JM & Chaouch A (1987). Descending serotoninergic systems. Pain Headache 9, 64–100.
    Boggs JW, Wenzel BJ, Gustafson KJ & Grill WM (2005). Spinal micturition reflex mediated by afferents in the deep perineal nerve. J Neurophysiol 93, 2688–97.
    Boggs JW, Wenzel BJ, Gustafson KJ & Grill WM (2006a). Bladder emptying by intermittent electrical stimulation of the pudendal nerve J Neural Eng 3, 43–51.
    Boggs JW, Wenzel BJ, Gustafson KJ & Grill WM (2006b). Frequency-dependent selection of reflexes by pudendal afferents in the cat J Physiol 577(Pt 1), 115–26.
    Bosch J L 2006 Electrical neuromodulatory therapy in female voiding dysfunction BJU Int. 98(Suppl. 1), 43–8.
    Boy S, Reitz A, Wirth B, Knapp PA, Braun PM, Haferkamp A & Schurch B (2006). Facilitatory neuromodulative effect of duloxetine on pudendal motor neurons controlling the urethral pressure: a functional urodynamic study in healthy women. Eur Urol 50, 119-25.
    Brading AF (1999). The physiology of the mammalian urinary outflow tract. Exp Physiol 84, 215-21.
    Bradley W, Griffin D, Teague C & Timm G (1973). Sensory innervation of the mammalian urethra. Invest Urol 10, 287–9.
    Buss RR & Shefchyk SJ (1999). Excitability changes in sacral afferents innervating the urethra, perineum and hindlimb skin of the cat during micturition. J Physiol 514, 593-607.
    Bycroft J, Craggs M, Sheriff M, Knight S & Shah P (2004). Does magnetic stimulation of sacral nerve roots cause contraction or suppression of the bladder? Neurourol Urodyn 23, 241–5.
    Cannon TW & Damaser MS (2001). Effects of anesthesia on cystometry and leak point pressure of the female rat. Life Sci 69, 1193-202.
    Cannon TW, Wojcik EM, Ferguson CL, Saraga S, Thomas C & Damaser MS (2002). Effects of vaginal distension on urethral anatomy and function. BJU Int 90, 403-7.
    Chang HY, Cheng CL, Chen JJ & de Groat WC (2007). Serotonergic drugs and spinal cord transections indicate that different spinal circuits are involved in external urethral sphincter activity in rats. Am J Physiol Renal Physiol 292, F1044-53.
    Chang HY, Cheng CL, Chen JJ, Peng CW & de Groat WC (2006). Reflexes evoked by electrical stimulation of afferent axons in the pudendal nerve under empty and distended bladder conditions in urethane-anesthetized rats. J Neurosci Methods 150, 80-9.
    Chen Z, Anderson DL, Faison WL & Baer PG (2001). Biphasic urethral sphincter responses to acetic acid infusion into the lower urinary tract in anesthetized cats. J Urol 166, 1539-48.
    Cheng CL, Chai CY & de Groat WC (1997). Detrusor-sphincter dyssynergia induced by cold stimulation of the urinary bladder of rats. Am J Physiol 272(4 Pt 2), R1271-82.
    Cheng CL & de Groat WC (2004). The role of capsaicin-sensitive afferent fibers in the lower urinary tract dysfunction induced by chronic spinal cord injury in rats. Exp Neurol 187, 445-54.
    Cheng CL, Liu JC, Chang SY, Ma CP & de Groat WC (1999). Effect of capsaicin on the micturition reflex in normal and chronic spinal cord-injured cats. Am J Physiol 277(3 Pt 2), R786-94.
    Chermansky CJ, Cannon TW, Torimoto K, Fraser MO, Yoshimura N, de Groat WC & Chancellor MB (2004). A model of intrinsic sphincteric deficiency in the rat: electrocauterization. Neurourol Urodyn 23, 166-71.
    Chiappinelli VA (1985). Actions of snake venom toxins on neuronal nicotinic receptors and other neuronal receptors. Pharmaco Ther 31, l-32.
    Conley RK, Williams TJ, Ford APDW & Ramage AG (2001). The role of a1-adrenoceptors and 5-HT1A receptors in the control of the micturition reflex in male anaesthetized rats. Br J Pharmacol 133, 61-72.
    Conte B, Maggi CA, Giachetti A, Parlani M, Lopez G & Manzini S (1993). Intraurethral capsaicin produces reflex activation of the striated urethral sphincter in urethane-anesthetized male rats. J Urol 150, 1271-7.
    Conte B, Maggi CA, Parlani M, Lopez G, Manzini S & Giachetti A (1991). Simultaneous recording of vesical and urethral pressure in urethane-anesthetized rats: effect of neuromuscular blocking agents on the activity of the external urethral sphincter. J Pharmacol Method 26, 161-71.
    Conway DA, Kamo I, Yoshimura N, Chancellor MB & Cannon TW (2005). Comparison of leak point pressure methods in an animal model of stress urinary incontinence. Int Urogynecol J Pelvic Floor Dysfunct 16, 359-63.
    Coolen LM, Allard J, Truitt WA & McKenna KE (2004). Central regulation of ejaculation. Physiol Behav 83, 203-15.
    Creasey GH (1993). Electrical stimulation of sacral roots for micturition after spinal cord injury. Urol Clin North Am 20, 505–15.
    Creasey G et al (2001). An implantable neuroprosthesis for restoring bladder and bowel control to patients with spinal cord injuries: a multicenter trial. Arch Phys Med Rehabil 82, 1512–9.
    Cruz Y & Downie JW (2005). Sexually dimorphic micturition in rats: relationship of perineal muscle activity to voiding pattern. Am J Physiol Regul Integr Comp Physiol 289, R1307-18.
    Cruz Y & Downie JW (2006). Abdominal muscle activity during voiding in female rats with normal or irritated bladder. Am J Physiol Regul Integr Comp Physiol 290, R1436-45.
    Cruz Y, Zempoalteca R, Angelica Lucio R, Pacheco P, Hudson R & Martinez-Gomez M (2004). Pattern of sensory innervation of the perineal skin in the female rat. Brain Res 1024, 97-103.
    Dalton DW & Tyers MB (1982). A comparison of the muscarinic antagonist actions of pancuronium and alcuronium. J Auton Pharmacol 2, 261-6.
    Damaser MS, Broxton-King C, Ferguson C, Kim FJ & Kerns JM (2003). Functional and neuroanatomical effects of vaginal distention and pudendal nerve crush in the female rat. J Urol 170, 1027-31.
    Dasgupta R, Wiseman OJ, Kitchen N & Fowler CJ (2004). Long-term results of sacral neuromodulation for women with urinary retention. BJU Int 94, 335–7.
    De Groat WC (1993). Anatomy and physiology of the lower urinary tract. Urol Clin North Am 20, 383–401.
    De Groat WC (2006). Integrative control of the lower urinary tract: preclinical perspective. Br J Pharmacol 147, S25-40.
    De Groat WC, Booth AM & Yoshimura N (1993). Neurophysiology of micturition and its modification in animal models of human disease. In: Nervous Control of the Urogenitial System, ed. Maggi, CA, 229-90. New York: Harwood Academic Publisher.
    De Groat WC, Fraser MO, Yoshiyama M, Smerin S, Tai C, Chancellor MB, Yoshimura N & Roppolo JR (2001). Neural control of the urethra. Scand J Urol Nephrol Suppl(207), 35-43; discussion 106-25.
    Dmochowski RR, Miklos JR, Norton PA, Zinner NR, Yalcin I, Bump RC & Duloxetine Urinary Incontinence Study Group (2003). Duloxetine versus placebo for the treatment of North American women with stress urinary incontinence. J Urol 170, 1259–63.
    Fang ZP & Mortimer JT (1991). Selective activation of small motor axons by quasi-trapezoidal current pulses. IEEE Trans Biomed Eng 38, 168-74.
    Fernandez-Guasti A, Escalante AL, Ahlenius S, Hillegaart V & Larsson K (1992). Stimulation of 5-HT1A and 5-HT1B receptors in brain regions and its effects on male rat sexual behaviour. Eur J Pharmacol 210, 121–9.
    Garry RC, Roberts TD & Todd JK (1959). Reflexes involving the external urethral sphincter in the cat. J Physiol 149, 653–65.
    Gustafson K, Creasey G & Grill WM (2004). A urethral afferent mediated excitatory bladder reflex exists in humans. Neurosci Lett 360, 9–12.
    Gustafson KJ, Creasey GH & Grill WM (2003). A catheter based method to activate urethral sensory nerve fibers. J Urol 170, 126-9.
    Gustafson KJ, Zelkovic PF, Feng AH, Draper CE, Bodner DR & Grill WM (2005). Fascicular anatomy and surgical access of the pudendal nerve. World J Urol 23, 411–8.
    Heidkamp MC, Leong FC, Brubaker L & Russell B (1998). Pudendal denervation affects the structure and function of the striated, urethral sphincter in female rats. Int Urogynecol J Pelvic Floor Dysfunct 9, 88-93.
    Hillegaart V, Ahlenius S & Larsson K (1991). Region-selective inhibition of male rat sexual behavior and motor performance by localized forebrain 5-HT injections: a comparison with effects produced by 8-OH-DPAT. Behav Brain Res 42, 169–80.
    Hosoya Y, Okado N, Sugiura Y & Kohno K (1991). Coincidence of ‘ladder-like patterns’ in distributions of monoaminergic terminals and sympathetic preganglionic neurons in the rat spinal cord. Exp Brain Res 86, 224–8.
    Ishizuka O, GU B, Igawa Y, Nishizawa O, Pehrson R & Andersson KE (2002). Role of supraspinal serotonin receptors for micturition in normal conscious rats. Neurourol Urodyn 21, 225-30.
    Jiang CH & Lindstrom S (1998). Prolonged increase in micturition threshold volume by anogenital afferent stimulation in the rat. Br J Urol 82, 398–403.
    Jung SY, Fraser MO, Ozawa H, Yokoyama O, Yoshiyama M, de Groat WC & Chancellor M B (1999). Urethral afferent nerve activity affects the micturition reflex; implication for the relationship between stress incontinence and detrusor instability. J Urol 162, 204–12.
    Jonas U et al (2001). Efficacy of sacral nerve stimulation for urinary retention: results 18 months after implantation. J Urol 165, 15–9.
    Kamo I, Cannon TW, Conway DA, Torimoto K, Chancellor MB, de Groat WC & Yoshimura N (2004). The role of bladder-to-urethral reflexes in urinary continence mechanisms in rats. Am J Physiol Renal Physiol 287, F434-41.
    Kane DD, Shott S, Hughes WF & Kerns JM (2002). Motor pudendal nerve characterization in the female rat. Anat Rec 266, 21-9.
    Kayigil O, Iftekhar Ahmed S & Metin A (1999). The coexistence of intrinsic sphincter deficiency with type II stress incontinence. J Urol 162, 1365-6.
    Kerns JM, Damaser MS, Kane JM, Sakamoto K, Benson JT, Shott S & Brubaker L (2000). Effects of pudendal nerve injury in the female rat. Neurourol Urodyn 19, 53-69.
    Kiruluta HG, Downie JW & Awad SA (1981). The continence mechanisms: the effect of bladder filling on the urethra. Invest Urol 18, 460-5.
    Kojima M, Takeuchi Y, Goto M & Sano Y (1983). Immunohistochemical study on the localization of serotonin fibers and terminals in the spinal cord of the monkey. Cell Tissue Res 229, 23–36.
    Kontani H. & Shiraoya C (2002). Sex difference in urethral response to electrical stimulation of efferent nerves in the pudendal sensory branch of rats. Int J Urol 9, 586–95.
    Kruse MN, Belton AL & de Groat WC (1993). Changes in bladder and external urethral sphincter function after spinal cord injury in the rat. Am J Physiol 264, R1157-63.
    Kruse MN & de Groat WC (1993). Spinal pathways mediate coordinated bladder/urethral sphincter activity during reflex micturition in decerebrate and spinalized neonatal rats. Neurosci Lett 152, 141-4.
    Lecci A, Giuliani S, Santicioli P & Maggi CA (1992). Involvement of 5-hydroxytryptamine1A receptors in the modulation of micturition reflexes in the anesthetized rats. J Pharmacol Exp Ther 262, 181–9.
    Le Feber J, van Asselt E & Van Mastrigt R (1998). Neurophysiological modeling of voiding in rats: urethral nerve response to urethral pressure and flow. Am J Physiol 274, R1473-81.
    Lee JY, Cannon TW, Pruchnic R, Fraser MO, Huard J & Chancellor MB (2003). The effects of periurethral muscle-derived stem cell injection on leak point pressure in a rat model of stress urinary incontinence. Int Urogynecol J Pelvic Floor Dysfunct 14, 31-7.
    Li CL & Bak A (1976). Excitability characteristics of the A- and C-fibers in a peripheral nerve. Exp Neurol 50, 67-79.
    Light JK, Vodusek D & Libby JM (1986). Inhibition of detrusor hyperreflexia by a selective electrical stimulation of the pudendal nerve. J Urol 135, 198.
    Lindstrom S & Sudsuang R (1989). Functionally specific bladder reflexes from pelvic and pudendal nerve branches: an experimental study in the cat. Neurourol Urodyn 8, 492–3.
    Lindstrom S, Fall M, Carlsson CA & Erlandson BE (1983). The neurophysiological basis of bladder inhibition in response to intravaginal electrical stimulation. J Urol 129, 405–10.
    Maggi CA, Giuliani S, Santicioli P & Meli A (1986). Analysis of factors involved in determining urinary bladder voiding cycle in urethan-anesthetized rats. Am J Physiol 251(2 Pt 2), R250-7.
    Mazieres L, Jiang C & Lindstrom S (1998). The C fibre reflex of the cat urinary bladder. J Physiol 513(Pt 2), 531–41.
    McKenna KE & Nadelhaft I (1986). The organization of the pudendal nerve in the male and female rat. J Comp Neurol 248, 532-49.
    McKenna KE & Nadelhaft I (1989). The pudendo-pudendal reflex in male and female rats. J Auton Nerv Syst 27, 67-77.
    Nishizawa O, Satoh S, Harada T, Nakamura H, Fukuda T, Tsukada T & Tsuchida S (1984). Role of the pudendal nerves on the dynamics of micturition in the dog evaluated by pressure flow EMG and pressure flow plot studies. J Urol 132, 1036-9.
    O’Bichere A, Green C & Phillips RK (2000). New, simple approach for maximal pudendal nerve exposure: anomalies and prospects for functional reconstruction. Dis Colon Rectum 43, 956–60.
    Oelrich TM (1980). The urethral sphincter muscle in the male. Am J Anat 158, 229-46.
    Ohlsson B, Fall M & Frankenberg-Sommar S (1989). Effects of external and direct pudendal nerve maximal electrical stimulation in the treatment of the uninhibited overactive bladder. Br J Urol 64, 374–80.
    Ostergaard D, Engbaek J & Viby-Mogensen J (1989). Adverse reactions and interactions of the neuromuscular blocking drugs. Med Toxicol Adverse Drug Exp 4, 351-68.
    Pacheco P, Camacho MA, Garcia LI, Hernandez ME, Carrillo P & Manzo J (1997). Electrophysiological evidence for the nomenclature of the pudendal nerve and sacral plexus in the male rat. Brain Res 763, 202-8.
    Pacheco P, Martinez-Gomez M, Whipple B, Beyer C & Komisaruk BR (1989). Somato-motor components of the pelvic and pudendal nerves of the female rat. Brain Res 490, 85-94.
    Pehrson R, Ojteg G, Ishizuka O & Andersson KE (2002). Effects of NAD-299, a new, highly selective 5-HT1A receptor antagonist, on bladder function in rats. Naunyn-Schmiedberg’s Arch. Pharmacol 366, 528-36.
    Peng CW, Chen JJJ, Chang HY, de Groat WC, Cheng CL (2005). Effect of acute pudendal nerve injury on external urethral sphincter (EUS) activity in the rat. Soc Neurosci Abstr.
    Peng CW, Chen JJ, Chang HY, de Groat WC & Cheng CL (2006). External urethral sphincter activity in a rat model of pudendal nerve injury. Neurourol Urodyn 25, 388-96.
    Peng CW, Chen JJ, Cheng CL & Grill W M (2007). Role of pudendal afferents in voiding efficiency in the rat. Am J Physiol Regul Integr Comp Physiol (Submitted).
    Perl ER (1992). Function of dorsal root ganglion neurons: an overview. In: sensory neurons (Scott SA, ed), 3–23 New York: Oxford UP.
    Peters KM, Feber KM & Bennett RC (2005). Sacral versus pudendal nerve stimulation for voiding dysfunction: a prospective, single-blinded, randomized, crossover trial. Neurourol Urodyn 24, 643–7.
    Praud C, Sebe P, Mondet F & Sebille A (2003). The striated urethral sphincter in female rats. Anat Embryol (Berl) 207, 169–75.
    Ramage AG (2006). The role of central 5-hydroxytryptamine (5-HT, serotonin) receptors in the control of micturition. Br J Pharmacol 147(Suppl 2), S120-31.
    Rodriguez LV, Chen S, Jack GS, de Almeida F, Lee KW & Zhang R (2005). New objective measures to quantify stress urinary incontinence in a novel durable animal model of intrinsic sphincter deficiency. Am J Physiol Regul Integr Comp Physiol 288, R1332-38.
    Russell B, Baumann M, Heidkamp MC & Svanborg A (1996). Morphometry of the aging female rat urethra. Int Urogynecol J Pelvic Floor Dysfunct 7, 30–6.
    Sakamoto K, Smith GM, Storer PD, Jones KJ & Damaser MS (2000). Neuroregeneration and voiding behavior patterns after pudendal nerve crush in female rats. Neurourol Urodyn 19, 311-21.
    Shafik A & Doss S (1999a). Surgical anatomy of the somatic terminal innervation to the anal and urethral sphincters: role in anal and urethral surgery. J Urol 161, 85–9.
    Shafik A & Doss SH (1999b). Pudendal canal: surgical anatomy and clinical implications. Am Surg 65, 176–80.
    Shafik A, Shafik AA, El-Sibai O & Ahmed I (2003a). Role of positive urethrovesical feedback in vesical evacuation. The concept of a second micturition reflex: the urethrovesical reflex. World J Urol 21, 167-70.
    Shafik A, El-Sibai O & Ahmed I (2003b). Effect of urethral dilation on vesical motor activity: identification of the urethrovesical reflex and its role in voiding. J Urol 169, 1017-9.
    Shaker HS & Hassouna M (1998). Sacral root neuromodulation in idiopathic nonobstructive chronic urinary retention. J Urol 159, 1476–8.
    Shefchyk SJ & Buss RR (1998). Urethral pudendal afferent-evoked bladder and sphincter reflexes in decerebrate and acute spinal cats. Neurosci Lett 244, 137-140.
    Sievert KD, Emre Bakircioglu M, Tsai T, Dahms SE, Nunes L & Lue TF (2001). The effect of simulated birth trauma and/or ovariectomy on rodent continence mechanism. Part I: functional and structural change. J Urol 166, 311-7.
    Streng T, Santti R, Andersson KE & Talo A (2004). The role of the rhabdosphincter in female rat voiding. BJU Int 94, 138-42.
    Sundin T, Carlsson C & Kock NG (1974). Detrusor inhibition induced from mechanical stimulation of the anal region and from electrical stimulation of pudendal nerve afferents. An experimental study in cats. Invest Urol 11, 374–8.
    Sweeney DD & Chancellor MB (2005). Treatment of stress urinary incontinence with duloxetine hydrochloride. Rev Urol 7, 81-6.
    Tai C, Smerin SE, de Groat WC & Roppolo JR (2006). Pudendal-to-bladder reflex in chronic spinal-cord-injured cats. Exp Neurol 197, 225–34.
    Talaat M (1937). Afferent impulses in the nerves supplying the urinary bladder. J Physiol 89, 1–13.
    Tanagho EA & Schmidt RA (1988). Electrical stimulation in the clinical management of the neurogenic bladder. J Urol 140, 1331–9.
    Testa R, Guarneri L, Poggesi E, Angelico P, Velasco C, Ibba M, Cilia A, Motta G, Riva C & Leonardi A (1999). Effect of several 5-hydroxytryptamine1A receptor ligands on the micturition reflex in rats: comparison with WAY 100635. J Pharmacol Exp Ther 290, 1258-69.
    Thom DH & Brown JS (1998). Reproductive and hormonal risk factors for urinary incontinence in later life: a review of the clinical and epidemiologic literature. J Am Geriatr Soc 46, 1411-7.
    Thor KB (2003). Serotonin and norepinephrine involvement in efferent pathways to the urethral rhabdosphincter: implications for treating stress urinary incontinence. Urology 62(4 Suppl 1), 3-9.
    Thor KB, Katofiasc MA, Danuser H, Springer J & Schaus M (2002). The role of 5-HT(1A) receptors in control of lower urinary tract function in cats. Brain Res 946, 290-7.
    Thor KB & Muhlhauser MA (1999). Vesicoanal, urethroanal, and urethrovesical reflexes initiated by lower urinary tract irritation in the rat. Am J Physio 277, R1002-12.
    Thor KB, Nickolaus S & Helke CJ (1993). Autoradiographic localization of 5-hydroxytryptamine1A, 5-hydroxytryptamine1B and 5-hydroxytryptamine1C/2 binding sites in the rat spinal cord. Neuroscience 55, 235-52.
    Todd JK (1964). Afferent impulses in the pudendal nerves of the cat. Q J Exp Physiol Cogn Med Sci 49, 258-67.
    Truitt WA & Coolen LM (2002). Identification of a potential ejaculation generator in the spinal cord. Science 297, 1566-9.
    Van Asselt E, Groen J & van Mastrigt R (1995). A comparative study of voiding in rat and guinea pig: simultaneous measurement of flow rate and pressure. Am J Physiol Regul Integr Comp Physiol 269, R98-103.
    Van Voskuilen AC, Oerlemans DJ, Weil EH, de Bie RA & van Kerrebroeck PE (2006). Long term results of neuromodulation by sacral nerve stimulation for lower urinary tract symptoms: a retrospective single center study. Eur Urol 49, 366–72.
    Velasco C, Guarneri L, Leonardi A & Testa R (2003). Effects of intravenous and infravesical administration of suramin, terazosin and BMY 7378 on bladder instability in conscious rats with bladder outlet obstruction. Br J Urol Int 92, 131-6.
    Vodusek DB, Light JK & Libby JM (1986). Detrusor inhibition induced by stimulation of pudendal nerve afferents. Neurourol Urodyn 5, 2381–9.
    Vodusek DB, Plevnik S, Vrtacnik P & Janez J (1988). Detrusor inhibition on selective pudendal nerve stimulation in the perineum. Neurourol Urodyn 6, 389–93.
    Walter J, Fitzgerald M, Wheeler J, Orris B, McDonnell A & Wurster R (2005). Bladder-wall and pelvic-plexus stimulation with model microstimulators: preliminary observations. J Rehabil Res Dev 42, 251–60.
    Walters MD (1989). Mechanisms of continence and voiding, with international continence society classification of dysfunction. Obstet Gynecol Clin North Am 16, 773-85.
    Watanabe H & Yamamoto TY (1979). Autonomic innervation of the muscles in the wall of the bladder and proximal urethra of male rats. J Anat 128, 873-86.
    Yaksh T, Durant P & Brent CR (1986). Micturition in rats: a chronic model for study of bladder function and effect of anesthetics. Am J Physiol 251(Pt 2), R1177–85.
    Yoshimura N, Seki S, Erickson KA, Erickson VL, Hancellor MB & de Groat WC (2003). Histological and electrical properties of rat dorsal root ganglion neurons innervating the lower urinary tract. J Neurosci 23, 4355–61.
    Yoshiyama M, deGroat WC & Fraser MO (2000). Influences of external urethral sphincter relaxation induced by alpha-bungarotoxin, a neuromuscular junction blocking agent, on voiding dysfunction in the rat with spinal cord injury. Urology 55, 956-60.

    下載圖示 校內:2009-06-25公開
    校外:2010-06-25公開
    QR CODE