簡易檢索 / 詳目顯示

研究生: 古鎬華
Ku, Hao-Hua
論文名稱: 智慧型概念導向式影像內容搜尋擷取技術
Intelligent Concept-Oriented Search for Content-Based Image Retrieval
指導教授: 曾新穆
Tseng, Shin-Mu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 70
中文關鍵詞: 概念導向多媒體資料探勘影像內容擷取
外文關鍵詞: concept-oriented, multimedia, data mining, content-based image retrieval
相關次數: 點閱:117下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,多數研究皆以內容為基礎作影像搜尋,而這些研究多利用影像內容特徵的比對,希望透過相似函數的計算,直接找出相類似的比對影像的特徵,且有效率地擷取資料。雖然某些以內容為基礎的影像搜尋系統也許能提供不錯的擷取結果,但是這些低階的影像內容特徵並不能完全反映人類高階語意概念,事實上,這些隱藏在圖片裡的人性概念,才是影像擷取真正的關鍵目標。本研究主要目的係以影音多媒體內容為基礎,透過物件的註解方式,發展以語意概念為導向之智慧型影像內容搜尋方法,並利用資料探勘相關技術,提供使用者透過人性化的介面以捕捉更高階的人性概念。我們將此嶄新的方法稱之為智慧型概念導向式影像內容搜尋擷取(Intelligent Concept-Oriented Search for Content-based Image Retrieval)。在此方法中,我們發展了以下的創新技術:1)智慧型的影像內容搜尋方法2 )物件式的註解方法3)物件式的關聯探勘技術4)語意概念之排序方法。

    In recent years, a number of research works have been proposed for content-based image retrieval with different features. Theses works usually use the content of images, low-level features to calculate the similarity between images that hope to find the similar images and retrieve image database efficiently. Although some novel content-based image retrieval systems may provide good retrieval results, the low-level features cannot entirely represent the high-level human sense in retrieval. Hence, the retrieval process is not effective. In fact, the concepts hidden in the images are often the key targets for image retrieval from the viewpoint of human sense. In this paper, we propose a new approach named Intelligent Concept-Oriented Search (ICOS) that can catch the high-level concepts of the users for performing content-based image retrieval by using a data mining approach. Through experimental evaluation, the proposed approach can provide fast and accurate image retrieval in user-friendly interface. We also develop new skills like the methods of intelligent concept-oriented search for content-based image retrieval, object annotation, association rules between objects, and the ranking methods for ontology concept.

    英文摘要 I 中文摘要 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 導論 1 1.1 研究背景 1 1.2 研究動機與目的 2 1.3 問題描述 2 1.4 研究方法概述 4 1.5 論文貢獻 5 1.6 論文架構 5 第二章 文獻探討 6 2.1 以內容為基礎的影像搜尋系統(CBIR) 6 2.2 影像分割 7 2.3 影像低階特徵 13 2.4 分類問題相關研究及文獻 15 2.4.1 隱藏式馬可夫模型(Hidden Markov Model) 15 2.4.2 KNN (K-Nearest Neighbor) 16 2.4.3 SVM (Support Vector Machine) 16 2.4.4 決策樹(Decision Tree) 17 2.4.5 關聯規則分類法 17 2.5 關聯規則探勘法(Association Rules Mining) 18 2.5.1 關聯規則之定義 19 2.5.2 關聯規則探勘法之目的 19 2.5.3 關聯規則探勘方法 19 2.5.4 Apriori演算法 20 2.6 WordNet 21 第三章 研究方法 23 3.1 方法架構 23 3.2 圖片物件(objects)及其低階特徵值(features)的擷取 24 3.3 訓練階段 25 3.3.1 建立標準圖片物件 26 3.3.2 辨識未知圖片物件 28 3.3.3 探勘圖片物件間的關聯規則 28 3.3.4 建立概念樹(concept tree) 31 3.4 查詢階段 32 3.4.1 排序方法 33 3.4.2 系統範例說明 34 3.4.2 影像索引(image index) 40 第四章 實驗分析 41 4.1 實驗基本資料設定 41 4.2 實驗規劃 50 4.3 實驗結果 51 4.3.1 圖片物件辨識準確率實驗 51 4.3.2 圖片內容分析準確率實驗 53 4.3.3 圖片內容分析準確率及涵蓋率分布實驗 54 4.3.4 門檻值的最佳值設定實驗 56 4.3.5 頻繁項目集個數實驗 58 4.3.6 圖片查詢效率實驗 58 4.4 實驗總結 60 第五章 結論與未來的研究方向 61 5.1 結論 61 5.2 應用 62 5.3 未來研究方向 62 第六章 參考文獻 64

    [1] Z. Aghbari and A. Makinouchi, "Semantic Approach to Image Database Classification and Retrieval," NII Journal, no. 7, September, 2003.
    [2] R. Agrawal, T. Imielinkski and A. Swami, "Mining Association Rules between Sets of Items in Large Databases," Proceedings of ACM SIGMOD, pages 207-216, May 1993.
    [3] R. Agrawal and R. Srikant, "Fast Algorithms for Mining Association Rules", In Proceedings of 20th Very Large Databases (VLDB) Conference, 1994, pp. 487-499.
    [4] P. Andrey and P. Tarroux, “Unsupervised segmentation of Markov Random Field Modeled Textured Images Using Selectionist Relaxation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 20, Issue 3, pp. 252-262, March 1998.
    [5] A. Barla, F. Odone and A. VerriOld, "Fashioned State of the Art Image Classification," ICIAP 2003.
    [6] L.E. Baum, T. Petrie, G. Soules, and N. Weiss, “A maximization technique in the statistical analysis of probabilistic functions of finite state Markov chains,” Ann. Math. Stat., vol. 41, pp. 164-171, 1970.
    [7] K. Barnard and D. Forsyth, "Learning the Semantics of Words and Pictures," Eighth IEEE International Conference on Computer Vision, Vol. 2, pp. 408-415, July 2001.
    [8] A.B. Benitez and S.F. Chang, "Image Classification Using Multimedia Knowledge Networks," 2003 International Conference on Image Processing, Vol. 3, pp. 613-616, September 2003.
    [9] A. Bouajila, C. Claus, V. Draga, A. Herkersdorf, W. Kohtz, D. Llorente, M. Meitinger, F. Muller, R. Ohlendorf, H. Rauchfuss, I. Ruge, G. Spohrle, W. Stechele, T. Wild, D. Zeller, and J. Zeppenfeld, MPEG-7 eXperimentation Model(XM), Software available at http://www.lis.e-technik.tu-muenchen.de/research/bv/topics/mmdb/e_mpeg7.html
    [10] C. Carson, S. Belongie, H. Greenspan, and J. Malik, "Color- and Texture-based Image Segmentation Using the Expectation-Maximization Algorithm and Its Application to Content-Based Image Retrieval," Int. Conference Computer Vision, Bombay, India, Jan 1998.
    [11] C. Carson, S. Belongie, H. Greenspan, and J. Malik, "Blobworld: Image Segmentation Using Expectation-Maximization and Its Application to Image Querying," IEEE Transaction on Pattern Analysis and Machine Intelligence, 24(8), 1026-1038, August 2002.
    [12] S. Chandran and N. Kiran, "Image Retrieval With Embedded Region Relationships," Proceedings of the 2003 ACM symposium on Applied computing, pp. 760-764, 2003.
    [13] S.F. Chang, W. Chen, H.J. Meng, H. Sundaram, and D. Zhong, "A Fully Automated Content-Based Video Search Engine Supporting Spatiotemporal Queries," IEEE Transactions on Circuit and Systems for Video Technology, Vol. 8, No. 5, September 1998.
    [14] C.C. Chang and C.J. Lin, "Training v-support vector classifiers: Theory and algorithms," Neural Computation, 13(9):2119-2147, 2001.
    [15] C.C. Chang and C.J. Lin, LIBSVM : a library for support vector machines, Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm/
    [16] O. Chapelle, P. Haffner, and V.N. Vapnik, "Support Vector Machines for Hitogram-Based Image Classification," IEEE Transactions on Neural Networks, Vol. 10, Issue 5, September 1999.
    [17] Y. Deng, B.S. Manjunath, and H. Shin, "Color Image Segmentation," IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 2, pp. 1-451, June 1999.
    [18] C. Djeraba, "Association and Content-Based Retrieval," IEEE Trans. Knowl. Data Eng., 2003.
    [19] S. Fortin and L. Liu, "An Object-oriented Approach to Multi-level Association Rule Mining," Proceedings of the International Conference on Information and Knowledge Management (CIKM'96), ACM Press, November 12-16, Rockville, Maryland, USA. 1996.
    [20] M. Flickner, H. Sawhney, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker, "Query By Image and Video Content: The QBIC System," IEEE Computer Magazine, September 1995.
    [21] J. Huang, R. Kumar, and R. Zabih, "An Automatic Hierarchical Image Classification Scheme," ACM Multimedia, 1998.
    [22] A. Jain and D. Zongker, "Feature Selection : Evaluation, Application, and Small Sample Performance," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 19, Issue 2, pp. 153-158, February 1997.
    [23] J. Jeon, V. Lavrenko, and R. Manmatha, "Automatic Image Annotation and Retrieval using Cross-Media Relevance Models," Proceedings of the 26th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 119-126, 2003.
    [24] A. Kaplan and E. Rivlin, "Robust feature matching across widely separated color images," Proceedings of the 17th International Conference on Pattern Recognition, Vol. 2, pp. 136-139, August 2004.
    [25] M. Koskela, J. Laaksonen, and E. Oja, "MPEG-7 Descriptors in Content-Based Image Retrieval with PicSOM System," Proceedings of the 5th International Conference on Recent Advances in Visual Information System, pp. 247-258, 2002.
    [26] B. Liu, W. Hsu, and Y. Ma, "Integrating Classification and Association Rule Mining," Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining (KDD-98, full paper), New York, USA, 1998.
    [27] J. Li, A. Najmi and R.M. Gray, "Image classification by a two-dimension hidden Markov model," IEEE Transaction on Signal Processing, vol. 48, no. 2, pp. 517-533, February 2000.
    [28] Z.N. Li, O.R. Zaiane, and Z. Tauber, "Illumination Invariance and Object Model in Content-Based Image and Video Retrieval," Journal of Visual Communication and Image Representation, Academis Press. Vol. 10, No. 3, pp. 219-244, 1999.
    [29] H.J. Lin, Y.T. Kao, S.H. Yen, and C.J. Wang, "A Study of Shape-Based Image Retrieval," 24th International Conference on Distributed Computing Systems Workshops, pp. 118-123, March 2004.
    [30] C.Y. Lin, B.L. Tseng, and J.R. Smith, IBM MPEG-7 Annotation Tool, 2002.
    [31] G.A. Miller, "Wordnet: A Dictionary Browser in Information in Data," Proceedings of the First Conference of the UW Centre for the New Oxford Dictionary. Waterloo, Canada: University of Waterloo, 1985.
    [32] G.A. Miller, "Dictionaries in the Mind," Language and Cognitive Processes 1: 171-185, 1986.
    [33] G.A. Miller, WordNet is an online lexical reference system, Software available at http://wordnet.princeton.edu/
    [34] G.A. Miller and P.M. Gildea, "How Children Learn Words," Scientific American 257: No. 3: 94-99, 1987.
    [35] A. Pentland, R.W. Picard, and S. Sclaroff, "Photobook: tools for content-based manipulation of image databases," International Journal of Computer Vision, Vol. 18, Issue 3, pp. 233-254, 1996.
    [36] J.R. Quinlan, C4.5: Programs for Machine Learning. San Mateo, CA: Morgan Kaufmann, 1992.
    [37] J. Shi, and J. Malik, "Normalized Cuts and Image Segmentation," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, Issue 8, pp. 888-905, August 2000.
    [38] J.R. Smith and S.F. Chang, "VisualSEEK: A fully automated content-based image query system," ACM Multimedia Conference, November 1996.
    [39] M.V. Srinivasan, S. Venkatesh, and R. Hosie, "Qualitative estimation of camera motion parameters from video sequences," Pattern Recognition, Vol. 30, No 4, pp. 593-606, 1997.
    [40] J.H. Su and W.Y. Lin, "CBW: An efficient algorithm for frequent itemset mining," in Proceedings of the 37th Annual Hawaii International Conference on System Sciences, pp. 2004.
    [41] Y. Sun and S. Ozawa, "Semantic-meaningful Content-based Image Retrieval in Wavelet Domain," 5th ACM SIGMM international workshop on Multimedia information retrieval, 2003.
    [42] M. Szummer and R.W. Picard, "Indoor-Outdoor Image Classification," IEEE International Workshop on Content-based Access of Image and Video Databases, in conjunction with ICCV'98. Bombay, India, 1998.
    [43] V.S. Tseng and M.H. Wang, "A New Method for Image Classification by Using Multilevel Association Rules," IEEE International Workshop on Managing Data for Emerging Multimedia Applications, 2005.
    [44] H.H. Yu and W. Wolf, "Scenic classification methods for image and video databases," Proceedings of SPIE International Conference on Digital Image Storage and Archiving Systems, pp. 363-371, November 1995.
    [45] V. Vapnik, The Nature of Statistical Learning Theory. Springer Verlag, New York, 1995. ISBN 0-387-94559-8.
    [46] V. Vapnik, Statistical Learning Theory. Wiley, NY, 1998.
    [47] V. Vapnik and O. Chapelle. Bounds on error expectation for support vector machines. Neural Computation, 12(9):2013–2036, 2000.
    [48] W. Wang, Y. Song, and A. Zhang, "Semantics-based Image Retrieval by Region Saliency," Proceedings of the International Conference on Image and Video Retrieval, pp. 29-37, 2002.
    [49] Y. Zhang, M.A. Nascimento, and O.R. Zaiane, "Building Image Mosaics: An Application of Content-based Image Retrieval," IEEE International Conference on Multimedia and Exposition, Baltimore, MD, USA, July 6-9, 2003.
    [50] R. Zhang, Z.M. Zhang, and S. Khanzode, "A Data Mining Approach to Modeling Relationships among Categories in Image Collection," Proceedings of the 2004 ACM SIGKDD international conference on Knowledge discovery and data Mining, pp. 749-754, 2004.

    下載圖示 校內:2007-08-08公開
    校外:2007-08-08公開
    QR CODE