簡易檢索 / 詳目顯示

研究生: 黃俊銘
Huang, Jimmy
論文名稱: 探討鍍膜厚度及原子序與金屬及陶瓷基板對背向散射電子訊號的影響
Effects of Coating Thickness and Atomic Number on Backscattering Electron Signals in Metallic and Ceramic Substrates
指導教授: 郭瑞昭
Kuo, Jui-Chao
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 169
中文關鍵詞: 背向式散射電子菊池線金屬基板陶瓷基板金屬鍍膜
外文關鍵詞: Electron Backscattering Diffraction(EBSD), Kikuchi patterns, Metallic substrates, Ceramic substrates, Metal thin film
相關次數: 點閱:119下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對背向散射電子應用在金屬及陶瓷材料時所個別遇到的材料氧化及導電性不佳的問題提出了鍍上導電薄膜於觀測材料表面的解決方法,其鍍膜的目的在於隔絕試片與大氣直接接觸,避免氧化問題;以及增加陶瓷材料導電性,減少電荷累積問題。而材料表面鍍上薄膜時,薄膜的厚度及材料種類皆會影響背向散射電子的訊號,因此該論文將會個別探討厚度及材料原子序對背向散射電子訊號的
    影響。
    在材料的選擇,金屬基板有鋁、銅及銀;陶瓷基板則有氧化鋁、氧化鋯、氧化鈰;鍍層材料亦有鋁、鎳、和鉑;而鍍層利用電子束蒸鍍的方法,厚度則是介於 0nm 到 8nm,每 2nm 為一區間。最後再進行EBSD 掃描,利用 TSL OIM Analysis 6 軟體得到 Image quality、Confidential index、Fit、Hough peak intensity 的數值;Image J軟體得到二次電子圖像灰階值的分佈;CASIO 4.2 軟體進行電子入射情形,得到電子穿透深度及不同材料所對應的背向電子散射係數。
    實驗結果發現, 隨著鍍層的增厚,電子訊號必定受到阻擋影響而訊號衰退,其衰退情形隨著基板原子序的增加而變的緩慢,對金屬基板而言,鋁基板訊號衰退速度最快、銅基板次之、銀基板則是最慢衰退。陶瓷基板而言,也有相同的趨勢,氧化鋁基板的訊號退最快、 氧化鋯次之、氧化鈰最慢。模擬結果對比得知,原子序越大的基板將有較大的背向散射系數,造成背向散射電子的產率也會增加,因而使
    得電子訊號率退較慢。
    此外,針對鍍層的原子序進行觀察得知,除了鉑鍍層之外,鋁鍍層、鎳鍍層所造成訊號遮蔽效果為鎳鍍層大於鋁鍍層,其與模擬結果所得的電子訊號遮蔽效果相符。而模擬結果中的鉑鍍層,因原子序遠大於鋁、鎳,因此所造成的遮蔽效果最為顯著,訊號衰退最快,而實際量測結果發現,鉑鍍層得遮蔽效果卻不如鎳鍍層,係因實際結果中,鉑鍍層再薄膜時易呈島狀結構分佈,和基板的附著力不佳;而鋁、鎳鍍層附著力好,呈現均勻平坦狀,導致鉑鍍層的原子序最大,但所造
    成的遮蔽效果卻不為最大。
    不論金屬基材或是陶瓷基材在鋁、鎳、鉑鍍層皆為 2nm 時有最好的效果 EBSD 掃描效果,不論鍍層為鋁或鎳或鉑,在 2nm 厚鍍時雖對電子訊號有不同的遮蔽效應,但大抵上皆可被接解析,有足夠的訊號被偵測,完整的進行相鑑定、觀測晶粒大小及織構方向性,且又同時解決了電荷累積問題,使試片達穩定狀態。

    This thesis will propose some methods to solve the oxidation problem on metals and charging problem on ceramics.We deposited a thin conductive film on the surface of substrates, then it would separate the directly contact with atmosphere for metals and conduct the electrons out of the surface for ceramics.But the coating thin film will interfere the incident electrons and block the backscattering electrons out of substrates, so we will discuss the relationship between the atmoic number, film thickness and electron signals.
    In the experiment, we chose the Al,Cu,Ag as metal substrates, Al2O3 ,ZrO2 ,CeO2 as ceramic substrates, and Al,Ni,Pt as coating materials. After sample preparation, we
    used e-beam deposition to coat thin film from 0 to 8 nm with 2nm a step. Then used FE-SEM to do EBSD mapping, and analyzed with TSL OIM Analysis 6, Image J. Furthermore, using CASIO 4.2 software to simulate the condition in SEM scanning to compete the result with experiment.
    According to the results, no matter what the metals or ceramics are, when increasing the substrate atomic number, the backscattering electron signals is stronger than small atomic number materials, and the signal descendant rate is slow. Additionally, we also discussd the effect of thin film thickness and their atomic number. First, we found that the thicker coating film, the faster signals decay rate.
    Second, the larger atomic number of coating materials, the higher descendant rate for backscattering electron signals. But we found a exception for Pt coating. Based on the Pt physical properties, the adhesion force for Pt is not quiet well when depositing on substrates, so it is easy to peel off or form the island structure. Owing to the film morphology, the cross-section area for inelastic collide is shrinking, then the interference on elastic backscattering electrons is also reduced. So compare with the rule of larger coating atomic number, larger signals decay rate, it is not suitable for Pt materials.
    Last but also the more important,the best condition for solving charging problme and oxidation problem is coating a thin film under 2nm. Even though the coating film will also dimish the backscattering electorn signals, it is still under the acceptable range for resolving by TSL OIM Analysis 6 software.

    中文摘要 I Abstract III 致謝 IV 總目錄 V 表目錄 VIII 圖目錄 X 附錄 XVII 第一章 前言 1 1.1 研究背景 1 1.2 研究主題 3 第二章 文獻回顧及基礎理論 5 2.1 背向式散射電子(Electron Backscattering Electrons) 5 2.1.1 背向式散射電子的發展 5 2.1.2 菊池線(Kikuchi pattern)的形成與偵測系統 7 2.2 背向式散射電子之空間解析度 (Spatial Resolution)10 2.2.1 空間解析度的定義及介紹 10 2.2.2 影響解析度的因子 12 2.3 EBSD 試片之準備 23 第三章 蒙地卡羅模擬法 30 第四章 實驗材料與實驗流程 34 4.1 實驗設計與材料選取 34 4.2 實驗試片製備 36 4.3 實驗流程 38 4.4 實驗分析 40 4.4.1 EBSD 參數統計分析 40 4.4.2 SEM 影像統計分析 49 4.4.3 Monte Carlo simulation 數據分析 53 第五章 實驗結果 56 5.1 實驗結果 56 5.1.1 金屬基板(鋁、銅、銀) 56 5.1.2 非導體部分(陶瓷材料) 84 5.2 模擬結果 126 5.2.1 導體部分(金屬材料) 126 5.2.2 非導體部分(陶瓷材料) 133 第六章 討論 139 6.1 鍍層厚度對背向散射電子訊號的影響 139 6.2原子序對背向散射電子訊號的影響 144 6.2.1 基板原子序的影響 144 6.2.2 鍍層原子序的影響 150 第七章 結論 155 參考文獻 157

    1. S.Nishikawa, and S.Kikuchi, Diffraction of cathode rays by mica, Nature, 121 (1928) 1019-1020.
    2. S.Nishikawa, and S. Kikuchi, Diffraction of cathode rays by calcite, Nature, 122 (1928) 726-726.
    3. M.N. Alam, M. Blackman, and D.W. Pashley, High-Angle Kikuchi Patterns, Proceedings of the Royal Society of London Series Mathematical and Physical Sciences A, 221 (1954) 224-242.
    4. Delphic Chen, On Spatial and Angular Resolutions in Electron Backscattering Diffraction, Material Science and Engineering Department, National Cheng Kung University, Ph.D thesis, Taiwan, 2012.
    5. A.J. Hirsch, Electron diffraction based techniques in scanning electron microscopy of bulk material, Micron, 28 (1997) 279-308.
    6. F.J. Humphreys, Review - Grain and subgrain characterisation by electron backscatter diffraction, Journal of Materials Science, 36 (2001) 3833-3854.
    7. J.A.Venables,and C.J. Harlanda, Electron back-scattering
    patterns—A new technique for obtaining crystallographic
    information in the scanning electron microscope, Philosophical Magazine, 27 (1973) 1193-1200.
    8. F.J. Humphreys, Electron backscatter diffraction of grain and subgrain structures - resolution considerations, Journal of Microscopy-Oxford, 195 (1999) 212-216.
    9. R. A. Schwarzer, D. P. Field, B. L. Adams, M. Kumar,and A.J. Schwartz, Present state of electron backscatter diffraction and prospective developments, California, 2008.
    10. V.R. Olaf Engler, Introduction to Texture Analysis: Macrotexture, Microtexture, and Orientation Mapping, Second Edition, CRC Press, Florida, 2010.
    11. K. Kanaya,and S. Okayama, Penetration and Energy-Loss Theory of Electrons in Solid Targets. Applied Physics, 5 (1972) 43-58.
    12. E.M. Schulson, Review Electron Channelling patterns in scanning electron microscopy. Material Science, 12 (1977) 1071-1087.
    13. G. Joseph, D.E. Newbury, C.J. David, E.L. Charles, E. Patrick, L. Eric, S. Linda, and J.R. Michael, Scanning Electron Microscopy and X-ray Microanalysis, 3rd ed. Kluwer Academic/Plenum Publishers, New York, 2003.
    14. D.R. Steinmetz, and S. Zaefferer, Towards ultrahigh resolution EBSD by low accelerating voltage. Materials Science and Technology, 26 (2010) 640-645.
    15. D.Z. Steinmetz, Towards ultrahigh resolution EBSD by low accelerating voltage, in : EBSD conference, Chemnitz Germany, 18-19 May, 2009.
    16. F.J. Humphreys, and I. Brough, High resolution electron
    backscatter diffraction with a field emission gun scanning electron
    microscope, Microscopy-Oxford, 195 (1999) 6-9.
    17. S.X. Ren, Exploring spatial resolution in electron back-scattered diffraction experiments via Monte Carlo simulation. Microscopy and Microanalysis, 4 (1998) 15-22.
    18. A. Drake, and S.H.Vale, Development of an electron backscatter diffraction and microtexture measurement system. Institute of Physics Conference Series, 147 (1995) 137-140.
    19. Y.A. Novikov, A.V. Rakov, and M.N. Filippov, Beam current dependence of SEM electron probe diameter. Measurement Techniques, 47 (2004) 438-442.
    20. K. Kunze, S. Buzzi, J. Loffler, and J.P. Burg, Benefit of low vaccum SEM for EBSD application. EMC 14th European, Aachen Germany, 1-5 September 2008.
    21. S.M. Habesch, Electron backscattered diffraction analyses combined with environmental scanning electron microscopy: potential applications for non-conducting, uncoated mineralogical samples. Materials Science and Technology, 16 (2000) 1393-1398.
    22. A. Perez-Huerta, and M. Cusack, Optimizing Electron Backscatter Diffraction of Carbonate Biominerals-Resin Type and Carbon Coating. Microscopy and Microanalysis, 15 (2009) 197-203.
    23. M. Nowell Matthew, R.A.Witt, and T. Brian, EBSD sample
    preparation : techniques, tips, and tricks. Microscopy and
    Microanalysis, 11 (2005) 504-505
    24. 李碩仁, 電化學加工技術介紹與應用,碩士論文, 機械工程研 究所, 元智大學, 台灣, 2008.
    25. 劉弘松, 結合微放電與研磨技術之高精密度微孔加工研究,機械工程研究所, 碩士論文, 國立中央大學, 台灣, 2005
    26. G.L Wynick , and C.J. Boehlert, Use of electropolishing for enhanced metallic specimen preparation for electron backscatter diffraction analysis. MaterialsCharacterization, 55 (2005) 190-202.
    27. L. Koll, P. Tsipouridis, and E.A. Werner, Preparation of metallic samples for electron backscatter diffraction and its influence on measured misorientation. Journal of Microscopy, 243 (2011) 206-219.
    28. R.L. Lyles, S.J. Rothman, and W. Jäger, A cyanide-free solution for electropolishing silver. Metallography, 11 (1978) 361-363.
    29. S.I Wright, A review of automated orientation imaging microscopy (OIM). Journal of Computer-Assisted Microscopy, 5 (1993) 207-221.
    30. B.A. Adams, B.L. Wright, and K. Kunze , Orientaion Imaging-The Emergence of A New Microscopy. Materials Science and Technology, 24 (1993) 819-831.
    31. P.T. Pinard, P. Hovington, M. Lagace, and R. Gauvin, Development of Tools to Increase the Spatial Resolution of EBSD Maps. Microscopy Microanalysis, 15 (2009) 422-423.
    32. S. Tsukiyama,and M. Fukui, A Statistical Maximum Algorithm for Gaussian Mixture Models Considering the Cumulative Distribution Function Curve. Ieice Transactions on Fundamentals of Electronics Communications and Computer Sciences, 94a (2011) 2528-2536.
    33. M. Di Marzioa, A. Panzera, and C.C. Taylor, Smooth estimation of circular cumulative distribution functions and quantiles. Journal of Nonparametric Statistics, 24 (2012) 935-949.
    34. A. Winkelmann, C. Trager-Cowan, F. Sweeney, A.P. Day, and P. Parbrook, Many-beam dynamical simulation of electron
    backscatter diffraction patterns. Ultramicroscopy, 107 (2007) 414-421.
    35. A.G. Bishaya, and S.E. Gamal, Effect of γ-irradiation on the gauge factor of two-dimensional island platinum films. Radiation Physics and Chemistry, 81 (20127 ) 740-744.
    159
    36. D.W. Bassett, Field ion microscope studies of submonolayer films of nickel, palladium and platinum on (110) tungsten surfaces. Thin Solid Films, 48 (1978) 237-246.
    37. A. A. Milgram, and C.S. Lu, Field Effect and Electrical Conduction Mechanism in Discontinuous Thin Metal Films. Applied. Physics, 37 (1996) 4773-4780.
    38. S.R. Matope, and Y.I. Van der Merwe, Van der Waals interactions between silica spheres and metallic thin films created by e-beam evaporation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 411 (2012) 87-93.
    39. R.D. Fedorovich, A.G. Naumovets, and P.M. tomuhuk, Electron and Ligh Emission From Island Metal Films and Generation of Hot Electrons in Nanoparticles. Physics Report, 328 (2000) 73-179.
    40. S.B. Sriram, M. Kostovski, G. Mitchell, D. R. G. Stoddart, P. R. Austin, M.W. Michael , and A. Mitchell, Synthesis of Self-Assembled Island-Structured Complex Oxide Dielectric Films. Journal of Physical Chemistry C, 113 (2009) 16610-16614.

    下載圖示 校內:2015-07-26公開
    校外:2015-07-26公開
    QR CODE