簡易檢索 / 詳目顯示

研究生: 羅日蓮
Lo, Jih-Lien
論文名稱: 成鼠脊髓創傷後新生血管特徵之研究
Characterization of revascularization after spinal cord injury in mice
指導教授: 許鍾瑜
Hsu, Jung-Yu C.
共同指導教授: 郭余民
Kuo, Yu-Min
學位類別: 碩士
Master
系所名稱: 醫學院 - 細胞生物與解剖學研究所
Institute of Cell Biology and Anatomy
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 44
中文關鍵詞: 脊髓損傷血管重建血─脊髓障壁
外文關鍵詞: spinal cord injury, revascularization, blood-spinal cord barrier
相關次數: 點閱:97下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 正常脊髓內的血管外圍具有特殊的血管障壁,可保護脊髓組織免受血液中發炎細胞與有害物質的傷害。當脊髓受到創傷之後,外力的傷害不僅切斷神經纖維,同時也破壞血管障壁,發炎細胞得以滲入神經組織使傷口惡化。因此,重建受損的血管障壁是傷口復原的關鍵要素,因為健全的血管可以提供豐富的氧氣與養分促進修復。完整的血管障壁應具備三層結構,分別為緊密結合之內皮細胞、基底膜與星狀膠細胞的終足。過去研究顯示脊髓受創後,傷口修復過程中會自發性出現新生的血管,然而血管新生卻無助肢體運動功能的恢復,由此推測新生血管的血管障壁可能有缺損。因此,本論文所研究的問題為:脊髓損傷後自發性新生的血管是否和正常的血管一樣擁有結構完整的血管障壁?本研究運用脊髓胸段中度挫傷手術後的成年小鼠作為實驗組,與未接受手術之對照組作比較,透過西方墨點與免疫組織化學染色實驗得知特定細胞外基質在損傷後的表現量會顯著增加。脊髓受創傷後確實在損傷區域有自發性血管重建,其形態多為扭曲不規則狀。穿透式電子顯微鏡的觀察結果進一步證實這些血管的血管障壁並不完整,缺少基底膜或星狀膠細胞終足之覆蓋。儘管新生血管數量會逐漸增加,但卻與肢體運動功能的恢復沒有顯著關聯。我的研究結果對未來開發脊髓創傷療法提供了一個新的思考方向,除了增加新生血管的密度之外,更應重視重建完整血管障壁的重要性。

    The spinal cord parenchyma is protected from harmful substances in the blood by a vascular barrier, which consists of astrocytic processes, extracellular matrix molecules, and endothelial cells. After spinal cord injury, this vascular barrier is disrupted, leading to infiltration of inflammatory cells that further damage the tissue. During wound healing, revascularization occurs spontaneously in the lesion center where there is no astrocyte in injured mouse spinal cord. As such, how astrocytes in the uninjured area extend processes to wrap newly-formed blood vessels in the lesion center is unknown. Moreover, recent studies showed that increasing the vascular density in the lesion does not improve neural regeneration, raising a question whether or not the newly-formed blood vessels possess an intact vascular barrier. Therefore, I proposed to characterize revascularization in the mouse spinal cord subjected to a moderate mid-thoracic contusion injury. I found that the expression of matrix molecules including fibronectin, laminin, and collagen type IV increased after injury. As demonstrated by electron microscopy, moreover, most of the newly-formed blood vessels possessed disintegrated basement membrane, both immature and mature junctional complexes between endothelial cells, and compromised perivascular astrocytes, indicating a defective vascular barrier. Furthermore, increased density of these blood vessels was not associated with the recovery of hindlimb motor function. My results provide the first ultrastructural evidence demonstrating an abnormal vascular barrier of the newly-formed blood vessels in the injured spinal cord. It draws constructive clues for developing therapies to promote wound healing after spinal cord injury.

    中文摘要…………………………………………………………I 英文摘要…………………………………………………………II 誌謝…………………………………………………………………III 目錄…………………………………………………………………IV 表目錄………………………………………………………………V 圖目錄………………………………………………………………VI 緒論…………………………………………………………………1 材料與方法……………………………………………………4 結果…………………………………………………………………12 討論…………………………………………………………………16 結論…………………………………………………………………21 參考文獻…………………………………………………………22 圖表說明…………………………………………………………26 附錄…………………………………………………………………44

    1. Chen H-Y, Chen S-S, Chiu W-T, et al. A Nationwide Epidemiological Study of Spinal Cord Injury in Geriatric Patients in Taiwan. Neruroepidemiology 1997;16:241-247.
    2. Kwon B. Pathophysiology and pharmacologic treatment of acute spinal cord injury. The Spine Journal 2004;4:451-464.
    3. Mautes AE, Weinzierl MR, Donovan F, Noble LJ. Vascular events after spinal cord injury: contribution to secondary pathogenesis. Phys Ther 2000;80:673-687.
    4. Allen AR. Sugery of experimantal lesion of spinal cord equivalent to crush injury of fracture dislocation of spinal column: preliminary report. JAMA 1911;57:878.
    5. Silver J, Miller JH. Regeneration beyond the glial scar. Nature Reviews Neuroscience 2004;5:146-156.
    6. Wolburg H, Noell S, Wolburg-Buchholz K, Mack A, Fallier-Becker P. Agrin, Aquaporin-4, and Astrocyte Polarity as an Important Feature of the Blood-Brain Barrier. The Neuroscientist 2009;15:180-193.
    7. LeBleu VS, Macdonald B, Kalluri R. Structure and function of basement membranes. Exp Biol Med (Maywood) 2007;232:1121-1129.
    8. Abbott NJ, Rönnbäck L, Hansson E. Astrocyte–endothelial interactions at the blood–brain barrier. Nature Reviews Neuroscience 2006;7:41-53.
    9. Ballabh P, Braun A, Nedergaard M. The blood–brain barrier: an overviewStructure, regulation, and clinical implications. Neurobiol Dis 2004;16:1-13.
    10. Whetstone WD, Hsu JY, Eisenberg M, Werb Z, Noble-Haeusslein LJ. Blood-spinal cord barrier after spinal cord injury: relation to revascularization and wound healing. J Neurosci Res 2003;74:227-239.
    11. Loy DN, Crawford CH, Darnall JB, Burke DA, Onifer SM, Whittemore SR. Temporal progression of angiogenesis and basal lamina deposition after contusive spinal cord injury in the adult rat. The Journal of Comparative Neurology 2002;445:308-324.
    12. Han S, Arnold SA, Sithu SD, et al. Rescuing vasculature with intravenous angiopoietin-1 and v 3 integrin peptide is protective after spinal cord injury. Brain 2010;133:1026-1042.
    13. Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature 2008;453:314-321.
    14. Li J, Zhang Y-P, Kirsner RS. Angiogenesis in wound repair: Angiogenic growth factors and the extracellular matrix. Microsc Res Tech 2003;60:107-114.
    15. Dray C, Rougon G, Debarbieux F. Quantitative analysis by in vivo imaging of the dynamics of vascular and axonal networks in injured mouse spinal cord. Proc Natl Acad Sci U S A 2009;106:9459-9464.
    16. Benton RL, Maddie MA, Gruenthal MJ, Hagg T, Whittemore SR. Neutralizing endogenous VEGF following traumatic spinal cord injury modulates microvascular plasticity but not tissue sparing or functional recovery. Curr Neurovasc Res 2009;6:124-131.
    17. Benton RL, Whittemore SR. VEGF165 therapy exacerbates secondary damage following spinal cord injury. Neurochem Res 2003;28:1693-1703.
    18. Hsu JYC. Matrix Metalloproteinase-2 Facilitates Wound Healing Events That Promote Functional Recovery after Spinal Cord Injury. J Neurosci 2006;26:9841-9850.
    19. Basso DM, Fisher LC, Anderson AJ, Jakeman LB, McTigue DM, Popovich PG. Basso Mouse Scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains. J Neurotrauma 2006;23:635-659.
    20. Cummings B, Engessercesar C, Cadena G, Anderson A. Adaptation of a ladder beam walking task to assess locomotor recovery in mice following spinal cord injury. Behav Brain Res 2007;177:232-241.
    21. Nilsson M, Pekny M. Enriched environment and astrocytes in central nervous system regeneration. Journal of Rehabilitation Medicine 2007;39:345-352.
    22. Hsu J-YC, Stein SA, Xu X-M. Temporal and spatial distribution of growth-associated molecules and astroglial cells in the rat corticospinal tract during development. J Neurosci Res 2005;80:330-340.
    23. Pekny M, Johansson CB, Eliasson C, et al. Abnormal Reaction to Central Nervous System Injury in Mice Lacking Glial Fibrillary Acidic Protein and Vimentin. The Journal of Cell biology 1999;145:503-514.
    24. Hsu J-YC, Xu X-M. Early profiles of axonal growth and astroglial response after spinal cord hemisection and implantation of Schwann cell-seeded guidance channels in adult rats. J Neurosci Res 2005;82:472-483.
    25. Nesic O, Lee J, Ye Z, et al. Acute and chronic changes in aquaporin 4 expression after spinal cord injury. Neuroscience 2006;143:779-792.
    26. Verkman AS. Mammalian aquaporins: diverse physiological roles and potential clinical significance. Expert Reviews in Molecular Medicine 2008;10:e13.
    27. Kimura A, Hsu M, Seldin M, Verkman AS, Scharfman HE, Binder DK. Protective role of aquaporin-4 water channels after contusion spinal cord injury. Ann Neurol 2010:NA-NA.
    28. Nesic O, Guest JD, Zivadinovic D, et al. Aquaporins in spinal cord injury: the janus face of aquaporin 4. Neuroscience 2010;168:1019-1035.
    29. Davis GE. Endothelial Extracellular Matrix: Biosynthesis, Remodeling, and Functions During Vascular Morphogenesis and Neovessel Stabilization. Circ Res 2005;97:1093-1107.
    30. Hallmann R, Horn N, Selg M, Wendler O, Pausch F, Sorokin LM. Expression and function of laminins in the embryonic and mature vasculature. Physiol Rev 2005;85:979-1000.
    31. King VR, Alovskaya A, Wei DYT, Brown RA, Priestley JV. The use of injectable forms of fibrin and fibronectin to support axonal ingrowth after spinal cord injury. Biomaterials 2010;31:4447-4456.
    32. Wang C, Shuaib A. Critical role of microvasculature basal lamina in ischemic brain injury. Prog Neurobiol 2007;83:140-148.
    33. Jean C, Gravelle P, Fournie JJ, Laurent G. Influence of stress on extracellular matrix and integrin biology. Oncogene 2011;30:2697-2706.
    34. Milner R, Hung S, Erokwu B, Dore-Duffy P, LaManna JC, del Zoppo GJ. Increased expression of fibronectin and the α5β1 integrin in angiogenic cerebral blood vessels of mice subject to hypobaric hypoxia. Molecular and Cellular Neuroscience 2008;38:43-52.
    35. George EL, Georges-Labouesse EN, Patel-King RS, Rayburn H, Hynes RO. Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 1993;119:1079-1091.
    36. Miner JH, Cunningham J, Sanes JR. Roles for Laminin in Embryogenesis: Exencephaly, Syndactyly, and Placentopathy in Mice Lacking the Laminin α5 Chain J Cell Biol 1998;143:1713-1723.
    37. Thyboll J, Kortesmaa J, Cao R, et al. Deletion of the Laminin 4 Chain Leads to Impaired Microvessel Maturation. Mol Cell Biol 2002;22:1194-1202.
    38. Poschl E. Collagen IV is essential for basement membrane stability but dispensable for initiation of its assembly during early development. Development 2004;131:1619-1628.
    39. Liesi P. Induction of Type IV Collagen and Other Basement-Membrane-Associated Proteins after Spinal Cord Injury of the Adult Rat May Participate in Formation of the Glial Scar. Exp Neurol 2002;173:31-45.
    40. Hermanns S, Klapka N, Müller HW, . The collagenous lesion scar - an obstacle for axonal regeneration in brain and spinal cord injury Restorative Neurology and Neuroscience 2001;19:139-148.
    41. Joosten EAJ, Dijkstra S, Brook GA, Veldman H, Bär PR. Collagen IV Deposits Do Not Prevent Regrowing Axons From Penetrating the Lesion Site in Spinal Cord Injury. J Neurosci Res 2000;62:686-691.
    42. Alovskaya A, Alekseeva T, Phillips J, King V, Brown R. Fibronectin, Collagen, Fibrin - Components of Extracellular Matrix for Nerve Regeneration. In: Ashammakhi N, Reis RL, Chiellini E, eds. Topics in tissue engineering, 2007.
    43. Mundel TM, Kalluri R. Type IV collagen-derived angiogenesis inhibitors. Microvasc Res 2007;74:85-89.
    44. Hamers FPT, Koopmans GC, Joosten EAJ. CatWalk-Assisted Gait Analysis in the Assessment of Spinal Cord Injury. J Neurotrauma 2006;23:537-548.
    45. Ma, M. Behavioral and Histological Outcomes Following Graded Spinal Cord Contusion Injury in the C57Bl/6 Mouse. Exp Neurol 2001;169:239-254.

    下載圖示 校內:2013-08-30公開
    校外:2013-08-30公開
    QR CODE