| 研究生: |
黃孟威 Huang, Meng-Wei |
|---|---|
| 論文名稱: |
台灣鄰近海域極端波浪研究 Study on the Extreme Waves in Taiwan Waters |
| 指導教授: |
董東璟
Doong, Dong-Jiing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 極端波浪 、風域大小 、波浪成長 、颱風波浪 |
| 外文關鍵詞: | extreme waves, fetch, growth of wave, typhoon wave |
| 相關次數: | 點閱:73 下載:13 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
極端波浪(extreme waves)指的是在海洋中發生波高極高的波浪,波浪的成長與風的條件(風速、延時、風域)有關,而風的條件中又以風域(fetch)的資訊與相關研究與最少,因此本研究發展一套風域判釋法,可以根據大氣模式產出的風場資料,自動判釋出風域大小,驗證結果顯示所提出之風域判釋法可以合理地判釋出各種天氣系統下的風域大小。
本研究使用所提出之風域判釋法分析台灣鄰近海域在東北季風和西南季風期間的風場資料,分析結果顯示西南季風期間的平均風域大小為860 km,是東北季風期間(410 km)的兩倍以上,但是西南季風期間的平均風速為7.7 m/s,比東北季風期間的平均風速(9.7 m/s)低了20%左右。
本文以JONSWAP的波浪成長經驗公式估算季風期間可能發生之極端波浪,考慮各式極端條件進行分析,研究結果顯示,台灣海峽南側在西南季風期間最大波高可能達到2.28 m,是平時的2.17倍;台灣海峽北部海域在東北季風期間最大波高可能達到6.53 m,是平時的3.24倍,以上是單純由季風吹拂所估算出來的極端浪高,若鄰近有其他天氣系統或湧浪,加成的波高可能更大。另外,本文以Young(1988)提出之經驗式估算颱風期間的極端波浪,以過去紀錄最強颱風中心風速(95.8 m/s,2015年派翠沙颱風)估算所產生之極端波高可達23.41 m。
Extreme waves usually occur in the severe sea state. The growth of waves is related to wind conditions including wind speed, duration, and fetch, among them the information and related research of fetch are the least. This study had developed a fetch interpretation method, which automatically determine the length of fetch based on the wind field data from atmospheric models. The verification result shows that the proposed fetch interpretation method is reasonably under various weather systems. This study applied fetch interpretation method to calculate the length of fetch around Taiwan waters during the northeast monsoon and southwest monsoon period. The analysis result shows that the average length of fetch during the southwest monsoon period is 860 km, which is more than twice as length as the period during northeast monsoon (410 km). However, the average wind speed during the southwest monsoon is 7.7 m/s, which is about 20% less than the average wind speed during the northeast monsoon (9.7 m/s). Furthermore, JONSWAP’s wave growth empirical formula was used to estimate the height of extreme waves that may occur during monsoon period. When considering various extreme conditions, the maximum wave height in the south of the Taiwan Strait during the southwest monsoon may reach 2.28 m, which is 2.17 times than usual; during northeast monsoon, the maximum wave height may reach 6.53 m, which is 3.24 times than usual. The above are extreme wave heights estimated only by the blowing of the monsoon. If there are other weather systems nearby, the wave height may be even greater. In addition, this paper uses the empirical formula proposed by Young (1988) to estimate the extreme waves during the typhoon, that the extreme wave height can reach 23.41 m based on the central wind speed of the strongest typhoon ever recorded in the past (95.8 m/s, Typhoon Patricia in 2015).
[1] 侯和雄、劉正忠(1982),「臺灣海峽風浪特性之研究」,第6屆海洋工程研討會論文集,92-106。
[2] 梁乃匡(1989),「修訂的颱風湧浪預報法」,港灣技術,第四期,1-10。
[3] 梁乃匡(1994),「國內波浪模式概況及評估」,氣象學報第三十九卷第一期,56-62。
[4] 莊文傑、曾相茂,「臺灣海峽南段西南季風波浪之觀測特性」,第39屆海洋工程研討會論文集,89-94。
[5] 湯麟武(1971),「海岸工程規劃設計」,農復會特刊第二號。
[6] 饒國清、施孟憲,「杰拉華颱風期間台東外洋浮標風波流資料」,第 35 屆海洋工程研討會論文集,701-706。
[7] Adcock, T., Taylor, P., Yan, S., Ma, Q., & Janssen, P. (2011). Did the Draupner wave occur in a crossing sea? Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 467(2134), 3004-3021.
[8] Atkinson, G. D., & Holliday, C. R. (1977). Tropical cyclone minimum sea level pressure/maximum sustained wind relationship for the western North Pacific. Monthly Weather Review, 105(4), 421-427.
[9] Barbariol, F., Alves, J.-H. G., Benetazzo, A., Bergamasco, F., Bertotti, L., Carniel, S. (2017). Numerical modeling of space-time wave extremes using WAVEWATCH III. Ocean Dynamics, 67(3-4), 535-549.
[10] Bertin, X., Prouteau, E., & Letetrel, C. (2013). A significant increase in wave height in the North Atlantic Ocean over the 20th century. Global and Planetary Change, 106, 77-83.
[11] Bretschneider, C. L. (1957). Hurricane design wave practices. Journal of the Waterways and Harbors Division, 83(2), 1238-1.
[12] Bretschneider, C. L. (1972). A non-dimensional stationary hurricane wave model. In Offshore Technology Conference.
[13] Cardone, V. J., Jensen, R. E., Resio, D. T., Swail, V. R., & Cox, A. T. (1996). Evaluation of contemporary ocean wave models in rare extreme events: The “Halloween Storm” of October 1991 and the “Storm of the Century” of March 1993. Journal of Atmospheric and Oceanic Technology, 13(1), 198-230.
[14] Center, C. E. R. (1973). Shore protection manual (Vol. 1): US Army Coastal Engineering Research Center.
[15] Charles, E., Idier, D., Thiébot, J., Le Cozannet, G., Pedreros, R., Ardhuin, F., & Planton, S. (2012). Present wave climate in the Bay of Biscay: spatiotemporal variability and trends from 1958 to 2001. Journal of Climate, 25(6), 2020-2039.
[16] Chang, C. M., Fang, H. M., Chen, Y. W., & Chuang, S. H. (2015). Discussion on the maximum storm radius equations when calculating typhoon waves. J Mar Sci Technol, 23, 608-619.
[17] Doong, D.-J., Tsai, C.-H., Chen, Y.-C., Peng, J.-P., & Huang, C.-J. (2015). Statistical analysis on the long-term observations of typhoon waves in the Taiwan sea. Journal of Marine Science and Technology, 23(6), 893-900.
[18] Ebuchi, N. (1999). Growth of wind waves with fetch in the Sea of Japan under winter monsoon investigated using data from satellite altimeters and scatterometer. Journal of Oceanography, 55(5), 575-584.
[19] Fagherazzi, S., & Wiberg, P. (2009). Importance of wind conditions, fetch, and water levels on wave‐generated shear stresses in shallow intertidal basins. Journal of Geophysical Research: Earth Surface, 114(F3).
[20] Fedele, F. (2012). Space–time extremes in short-crested storm seas. Journal of Physical Oceanography, 42(9), 1601-1615.
[21] Finlayson, D. P. (2006). The geomorphology of Puget Sound beaches. University of Washington.
[22] Goda, Y. (1970). Numerical experiments on wave statistics with spectral simulation. Report Port Harbour Res. Inst., 9, 3-57.
[23] Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., Cartwright, D. E., Enke, K., Meerburg, A. (1973). Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Ergänzungsheft 8-12.
[24] Holliday, N. P., Yelland, M. J., Pascal, R., Swail, V. R., Taylor, P. K., Griffiths, C. R., & Kent, E. (2006). Were extreme waves in the Rockall Trough the largest ever recorded? Geophysical Research Letters, 33(5).
[25] Hsiao, S.-C. (2020). On the Sensitivity of Typhoon Wave Simulationsto Tidal Elevation and Current. Marine Science and Engineering.
[26] Hsiao, S.-C., Wu, H.-L., Chen, W.-B., Chang, C.-H., & Lin, L.-Y. (2020). On the Sensitivity of Typhoon Wave Simulations to Tidal Elevation and Current. Journal of Marine Science and Engineering, 8(9), 731.
[27] Hwang, P. A., & Fan, Y. (2017). Effective fetch and duration of tropical cyclone wind fields estimated from simultaneous wind and wave measurements: Surface wave and air–sea exchange computation. Journal of Physical Oceanography, 47(2), 447-470.
[28] Karmpadakis, I., Swan, C., & Christou, M. (2020). Assessment of wave height distributions using an extensive field database. Coastal Engineering, 157, 103630.
[29] Katsaros, K. B. (2003). Atmosphere-Ocean Interactions (Volume 1). Oceanography, 16(4), 106.
[30] Lamont-Smith, T., & Waseda, T. (2008). Wind wave growth at short fetch. Journal of Physical Oceanography, 38(7), 1597-1606.
[31] Liang, B., Gao, H., & Shao, Z. (2019). Characteristics of global waves based on the third-generation wave model SWAN. Marine Structures, 64, 35-53.
[32] Mitsuyasu, H. (1968). On the growth of the spectrum of wind-generated waves (1). Rep. Res. Inst. Appl. Mech., Kyushu Univ, 16, 459–482.
[33] Montoya, R., Arias, A. O., Royero, J. O., & Ocampo-Torres, F. (2013). A wave parameters and directional spectrum analysis for extreme winds. Ocean Engineering, 67, 100-118.
[34] Pelinovsky, E., & Kharif, C. (2008). Extreme ocean waves (Vol. 1495). Berlin: Springer.
[35] Perrie, W., & Z, Long. (2002). Regional atmosphere-wave-ocean impacts. Atmosphere-Ocean Interactions, vol. 1, 199–222.
[36] Pierson Jr, W. J., & Moskowitz, L. (1964). A proposed spectral form for fully developed wind seas based on the similarity theory of SA Kitaigorodskii. Journal of geophysical research, 69(24), 5181-5190.
[37] Rogers, R. F., Aberson, S., Bell, M. M., Cecil, D. J., Doyle, J. D., Kimberlain, T. B., ...& Velden, C. (2017). Rewriting the tropical record books: The extraordinary intensification of Hurricane Patricia (2015). Bulletin of the American Meteorological Society, 98(10), 2091-2112.
[38] Shemdin, O. H., & King, D. B. (1977). Hurricane waves, storm surge and currents: An assessment of the state of the art. In US—South East Asia Symposium on Engineering for Natural Hazards Protection, Manila.
[39] Sheng, Y., Shao, W., Li, S., Zhang, Y., Yang, H., & Zuo, J. (2019). Evaluation of typhoon waves simulated by WAVEWATCH-III model in shallow waters around Zhoushan Islands. Journal of Ocean University of China, 18(2), 365-375.
[40] Silva, R., Govaere, G., Salles, P., Bautista, G., & Díaz, G. (2003). Oceanographic vulnerability to hurricanes on the Mexican coast. Coastal Engineering 2002: Solving Coastal Conundrums, 39-51.
[41] Sverdrup, H. U., & Munk, W. H. (1947). Wind, sea and swell: Theory of relations for forecasting: Hydrographic Office.
[42] Toba, Y. (1978). Stochastic form of the growth of wind waves in a single-parameter representation with physical implications. Journal of Physical Oceanography, 8(3), 494-507.
[43] Willard Bascom .(1964) Waves and beaches,56.
[44] Wilson, B. W. (1965). Numerical prediction of ocean waves in the North Atlantic for December, 1959. Deutsche Hydrografische Zeitschrift, 18(3), 114-130.
[45] Young, I. R., & Burchell, G. (1996). Hurricane generated waves as observed by satellite. Ocean Engineering, 23(8), 761-776.
[46] Young, I. R. (1998). Observations of the spectra of hurricane generated waves. Ocean Engineering, 25(4-5), 261-276.
[47] Young, I. R. (1999). Wind generated ocean waves: Elsevier.
[48] Young, I. R., & Vinoth, J. (2013). An “extended fetch” model for the spatial distribution of tropical cyclone wind–waves as observed by altimeter. Ocean Engineering, 70, 14-24.
[49] Young, I. R. (2017). A review of parametric descriptions of tropical cyclone wind-wave generation. Atmosphere, 8(10), 194.