簡易檢索 / 詳目顯示

研究生: 張碧真
Chang, Pi-Chen
論文名稱: 利用電紡絲技術製備碳化矽奈米材料之研究
Fabrication and Characterization of Nano Silicon Carbide by Electrospinning
指導教授: 陳志勇
Chen, Chuh-Yung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 74
中文關鍵詞: 碳化矽聚丙烯腈靜電紡絲
外文關鍵詞: Silicon Carbide, Poly acrylonitrile(PAN), Electrospinning
相關次數: 點閱:104下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 碳化矽(SiC)是一具有高化學穩定性、高硬度、高導熱性以及低熱膨脹係數的陶瓷半導體材料,製備出來的碳化矽材料尺寸範圍多在微米以上,很少有奈米SiC合成技術的報導。因此本研究以聚丙烯腈(polyacrylonitrile, PAN)高分子溶液導入不同含量的二氧化矽(Silicon dioxide, SiO2),利用電紡絲技術製備出不同碳矽比例的SiO2/PAN複合奈米纖維,再以1400oC高溫鍛燒,使SiO2與PAN形成的碳纖維反應成為碳化矽奈米材料。經由掃描式電子顯微鏡觀察發現紡製出來的SiO2/PAN奈米纖維其直徑介於250nm ~400nm,且SiO2粒子均勻分散在複合奈米纖維內;經過高溫鍛燒後的奈米纖維由傅立葉轉換紅外線光譜儀(FTIR)分析,在797cm-1位置Si-C的吸收峰強度卻大幅增強,表示碳纖維與SiO2反應形成SiC;由X射線繞射儀(XRD)分析圖在2θ值為35.7度、60.0度、71.8度處均可觀察到beta-SiC結晶的特徵繞射峰,證實成功製備出具有碳化矽材料的奈米纖維;由熱重分析儀(TGA) 顯示碳矽比例為15/1、10/1和5/1的SiC/Carbon複合纖維最後剩下的重量百分比分別為65wt%、80wt%及90wt%,知道隨著碳矽比例下降,所得到的SiC材料也較多;進一步以掃描式電子顯微鏡與穿透電子顯微鏡觀察到鍛燒後的奈米纖維會形成三種結構:奈米纖維、不規則纖維和鬚晶;由高解析度TEM與電子繞射分析可以發現有SiC奈米粒子被包裹在奈米纖維之中;不規則纖維與鬚晶則是由純SiC組成的。

    In this study, an electrospinning process was used to fabricate silicon dioxide (SiO2)-embedded poly acrylonitrile (PAN) nanofibers. SiO2 nanoparticles were dispersed in the PAN before spinning. The SiC nano materials were made by economical Acheson method (carbothermal reduction). The carbothermal reduction of the stabilized SiO2/PAN fibers was carried out at 1400oC for 4 h in argon atmosphere with heating rate of 5oC/min to calcine SiC nano materials.
    The surface morphologies and structures of the SiO2/PAN nanofibers were characterized by scanning electron microscopy (SEM). SEM observation showed that the average diameter of the SiO2/PAN nanofibers was between 250nm and 400nm, and the SiO2 nanoparticles were embedded in the PAN nanofibers. The X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) results explicitly show that SiC was produced during carbothermal reduction. The product of SiC materials were increased with decreasing C/Si mol ratios of the precursor solution. From SEM and transmission electron microscopy (TEM) results, there are many different SiC structures including SiC/Carbon nanofibers and whiskers. The SiC particles were embedded in the SiC/Carbon nanofibers.

    摘要 I Abstract II 誌謝 III 總目錄 V 表目錄 VIII 圖目錄 IX 第一章 緒論 1 第二章 文獻回顧 4 2-1靜電紡絲技術及其原理 4 2-1-1靜電紡絲發展歷程 4 2-1-2 靜電紡絲的原理 5 2-1-3 影響電紡絲的實驗參數 6 2-1-3-1 高分子溶液的濃度 6 2-1-3-2 電場強度 6 2-1-3-3 針頭與收集板之間的距離 7 2-1-3-4 電紡絲溶液的流速 7 2-2 碳化矽的簡介 8 2-2-1 碳化矽的結構 8 2-2-2 碳化矽的性質 11 2-2-3 碳化矽的製造 13 2-2-3-1 Acheson法 13 2-2-3-2氣相反應法 14 2-2-3-3有機矽聚合物熱分解法 15 2-2-4 碳化矽的應用 16 2-3 研究方法與目的 17 第三章 實驗部分 18 3-1 實驗藥品 18 3-2 實驗儀器 19 3-2-1 非分析用儀器 19 3-2-2 分析用儀器 19 3-3 實驗步驟 21 3-3-1 PAN高分子的合成 21 3-3-2 Silica gel的製備 21 3-3-3 SiO2/PAN複合電紡溶液配製 22 3-3-4 SiO2/PAN複合奈米纖維製備 22 3-3-5 SiC/Carbon複合奈米纖維製備 22 3-3-6 SiC奈米材料製備 23 3-4分析方法 24 3-4-1 PAN高分子材料性質分析 24 3-4-2 複合奈米纖維材料性質分析 24 第四章 結果與討論 25 4-1 PAN高分子的合成 25 4-2 SiO2/PAN複合奈米纖維之結構與性質分析 26 4-2-1 C/Si比例 26 4-2-2 性質分析 27 4-2-2-1 EDS 27 4-2-2-2 TGA 29 4-2-3均勻性分析 30 4-3 SiC/Carbon複合奈米纖維之結構與性質分析 31 4-3-1 性質分析 31 4-3-1-1 FT-IR 31 4-3-1-2 EDS 34 4-3-1-3 TGA 35 4-3-1-3 XRD 36 4-3-2 表面型態 37 4-3-3 內部結構 40 4-3-3-1 奈米纖維型態 42 4-3-3-2 不規則纖維型態 45 4-3-3-3 鬚晶型態 47 4-4 SiC奈米材料之結構與性質分析 49 4-4-1性質分析 49 4-4-2 表面與內部型態分析 52 4-5 鍛燒溫度對SiC/Carbon不織布形成的影響 54 4-5-1性質分析 54 4-5-2表面與內部型態分析 56 4-6 碳化矽的生長機制 60 4-6-1 碳化矽粒子 60 4-6-2 碳化矽鬚晶 61 4-7 SiC/Carbon薄膜之結構與性質分析 65 第五章 結論 70 參考文獻 71 自述 74

    [1] 吳大誠、杜仲良、高緒珊,奈米纖維,五南圖書出版有限公司 (2004) 60-99
    [2] Z. M. Huang, Y. Z. Zhang, M. Kotaki and S. Ramakrishna, Composites Science and Technology (2003) 63: 2223-2253.
    [3] S. Ramakrishna, K. Fujihara, W. E. Teo, T. C. Lim, and Z. Ma, An Introduction to Electrospinning and Nanofibers, World Scientific Publishing Co. Pte. Ltd(2005)
    [4] T.L. Wadea, J. E. Wegrowe, European Physical Journal-applied Physics (2005) 29:3-22
    [5] L. Feng, S. Li, H. Li, et al., Angewandte Chemie International Edition (2002) 41:1221-1223
    [6] S. Muraishi, et al, Materials Science Forum (2005) 475:3651-3654
    [7] P. X. Ma, R. J. Zhang, Journal of Biomedical Materials Research (1999) 46:60-72
    [8] Bogdan Dragnea, et al., Journal of Materials Chemistry (2008)18:3768-3774
    [9] G. M. Whitesides, B. Grzybowski , Science (2002) 295:2418
    [10] J. M. Deitzel, J. Kleinmeyer, J. K. Hirvonen, et al., Polymer (2001) 42:8163-8170
    [11] A. Formhals, US Patent. 1,975, 504 (1934)
    [12] 汪建民、林博文,陶瓷技術手冊,中華民國粉末冶金協會(1994) 745-776
    [13] A. Ellison et al , Materials Science and Engineering(Netherlands) (1999) B61-62: 113–120
    [14] D. H. Hoffmann, M. H. Muller, Materials Science and Engineering(Netherlands) (1999) B61-62: 29-39
    [15] F. Hatakeyama, S. Kanzaki, Journal of the American Ceramic Society (1990) 73: 2107
    [16] I. S. Seog, C. H. kim, Journal of Materials Science (1993) 28: 3227
    [17] W. Zhu, G. Y. Zhao, V. Revankaar, V. Hlavacek, Journal of Materials Science (1993) 28: 659
    [18] J. Y. Guo, F. Gitzhofr, M. I. Boulos, Journal of Materials Science (1995) 30: 5889
    [19] B. Vonnegut, R. L. Neubauer, Journal of Colloid Science (1952) 7:616
    [20] G. I. Taylor, Proceedings of the Royal Society (1969) 313:453-475
    [21] H. L. Simons, US Patten 3,280, 229, (1966)
    [22] P. K. Baumgarten, Journal of Colloid and Interface Science (1971) 36(1):71-79.
    [23] L. Larrondo, et al., Journal of Polymer Science (1981) 19:921-932
    [24] J. Doshi, D. H. Reneker, Journal of Electrostatics (1995) 35:151-160
    [25] G. Srinivasan, D. H. Reneker, Polymer International (1995) 36:195-201
    [26] D. H. Reneker, I. Chun, Nanotechnology (1996) 7:216
    [27] C. J. Buchko, L. C. Chen, D. C. Martin, Polymer (1999) 40:7397-7407
    [28] J. S. Lee, K. H. Choi, et al., Journal of Applied Polymer Science (2004) 93:1638-1646
    [29] S. Megelski, J. S. Stephens, et al., Macromolecules (2002) 35:8456-8466
    [30] K. J. Pawlowski, H. L. Belvin, et al., Polymer (2003) 44:1309-1314
    [31] 黃靖涵,SiC的產業應用http://www.nanoclub.tw/research/SiC_on_Si/SiC_on_Si_wafer_materials.htm
    [32] 黃忠良,工程陶瓷(基礎研究‧應用技術),復漢出版社印行,16-18
    [33] 林博文,89 年工程陶瓷應用技術研討會論文集,國科會工程科技推展中心(2000) 155
    [34] Y. IM. Li , B.F.Fieselmann , A.Catalano , Amorphous and crystalline silicon carbide IV (1992) Springer-Verlag: 229
    [35] T. Takeuchi, H. Amano, K. Hiramatsu, N. Sawaki, I. Akasaki, J. Crystal Growth (1991) 115
    [36] W. F. Knippenberg, Philips Research Report (Netherlands) (1963) 18:161 – 274
    [37] 平井敏雄、淺倉寬行、佐佐木真,日本金屬學會會報,(1987) 26:809
    [38] S. Somiya, Y. Inomata, Silicon carbide ceramics 2, Elsevier applied science (1991)
    [39] A. R. Bunsell, A. Piant, Journal of Materials Science (2006) 41:823–839
    [40] G. Rahder, M. N. P. Carren~o, Journal of Non-Crystalline Solids (2006) 352
    [41] 工研院經資中心 ITIS 計畫,2001.07
    [42] Y. Kimura, T. Koesashi, T.Yagasaki and Fukazawa, Process third Conference Aluminum Alloys. Trondheim (1992) 467.
    [43] I. H. Chen, C. C. Wang, C. C. Chen, Carbon (2010) 48: 604 –611
    [44] G. Urretavizcaya, J.M. Porto Lopez, Journal of Materials Research (1994) 9:2981-2986
    [45] C. H. Chu, Y. M. Lu, M.H. Hon, Journal of Materials Science (1992) 17, 14 : 3883-3888

    無法下載圖示 校內:2017-08-15公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE